
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

THE PARADOX OF WRITING PERFECT CODE PAGE 20

PLUS...
EJB 3
Transactions

Configuring WebLogic
Server 9.x JDBC

RETAILERS PLEASE DISPLAY
UNTIL MARCH 31, 2007

 JDJ.SYS-CON.COM VOL.12 ISSUE:1

No. 1 i-Technology Magazine in the World

JDJ.SYS-CON.COM VOL.12 ISSUE:1

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM

What Is
SCA?

SEE PAGE 47

Performance Management 101
for WebLogic Portal

Altova® MapForce® 2007 – The premier data integration and Web services implementation tool.

Give your data
direction

Link up with MapForce® 2007,

and exchange data with ease.

Spied in MapForce 2007:
l Support for Web services as sources, targets, or

data processing functions in data integration projects
l Advanced capability for refactoring data mappings

l Tighter integration with Microsoft® Visual Studio® .NET

Altova MapForce 2007, the award-winning data

integration and Web services implementation tool,

makes it easy to exchange data between XML,

database, flat file, EDI and/or Web services formats

and to map data to WSDL operations. Simply drag

connecting lines from data sources to targets and drop

in data-processing functions. MapForce converts data

on-the-fly or auto-generates program code in XSLT 1.0/2.0,

XQuery, Java, C++, or C# for royalty free use in your data

integration and Web services applications. Get connected!

Download MapForce® 2007 today: www.altova.com

MapForce_JDJ.qxp 1/4/2007 4:23 PM Page 1

JDJ.SYS-CON.com

he year 2006 in which YouTube
became culturally ubiquitous,
Flash video became the de
facto Internet video standard

of the Web, Microsoft beta-launched
Vista, and the Wii entered our lives
– was also memorable for one or
two other real-world events such
as the hanging of Saddam Hussein,
prompting the obvious question: Is
the progress of
i-Technology front-runners like
Google and eBay more, or less, im-
portant than
the trial and
execution
of Saddam.
 The dif-
ficulty of
a working
life spent
examining
and indeed
celebrating
the vibrant
and ener-
getic world of Internet technologies
(i-Technology) is that there is always
a risk of allowing the real – as op-
posed to the virtual – world to slide
into relative insignificance. E-mails
risk seeming more important than
reality, and the birth of mere Web
sites takes on the gravity of much
more substantive and world-chang-
ing events.
 How do we gauge the relative im-
portance of a war criminal’s extinc-
tion and a Web site’s birth? What,

in short, matters most: the world of
geopolitics, wars, and globalization,
or the far more peaceful, equally glo-
balized world of the Internet?
 It is a problem set that can be
addressed in different ways. In the
case of Bill Gates, for example, he
has committed greater sums of
money made through i-Technology
than any man alive (specifically, an
endowment fund now worth US $24
billion) to bringing innovations in
health and learning to the global

community,
a cause that
has attracted
in addition
the substan-
tial fortune
of Warren
Buffett – who
gave the Bill
& Melinda
Gates Foun-
dation 85% of
his fortune.

 But what of the rest of us, those of
us with a current net worth less than
$53 billion and a 2006 salary plus
bonus of $966,667? Should we just
rejoice that 2006 has seen the liveli-
est array of Web 2.0 start-ups since
the bursting of the Silicon Bubble?
Or should we take more interest in
the prospects for global peace, or
lack of it, in a real world that doesn’t
necessarily reflect the same sense of
order and indeed hope as the World
Wide Web?

From the Editor

Which Is More Important –
Saddam Hussein or Google?

 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is Sr.

Vice-President, Editorial &

Events of SYS-CON Media.

He is Conference Chair of

the AJAXWorld Conference &

Expo series and of the “Real-

World Flex” One-Day Seminar

series. From 2000-6, as first

editorial director and then

group publisher of SYS-CON

Media, he was responsible

for the development of all

new titles and i-Technol-

ogy portals for the firm,

and regularly represents

SYS-CON at conferences

and trade shows, speaking

to technology audiences

both in North America and

overseas. He is executive

producer and presenter of

“Power Panels with Jeremy

Geelan” on SYS-CON.TV, and

is actively helping build out

the AJAXWorld brand as well

as developing entirely new

Conferences and One-Day

Seminars for SYS-CON Media

& Events.

jeremy@sys-con.com

Jeremy Geelan

T

3January 2007

The difficulty of a working life spent examining
and indeed celebrating the vibrant and energetic

world of Internet technologies (i-Technology)
is that there is always a risk of allowing the real
– as opposed to the virtual – world to slide into

relative insignificance.”

“

�������������������
��������������

������������������
�����������

�

�

���� ������� ��������� ����� ����� ���� ������� ����� ����������� ���������� ���� ������ ����� ������������
��������� ��

���������������������������

���

5January 2007JDJ.SYS-CON.com

JANUARY 2007 VOLUME:12 ISSUE:1

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.
Periodicals postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

Features

FROM THE EDITOR

Which Is More Important –
Saddam Hussein or Google?
by Jeremy Geelan.................................3
VIEWPOINT

Change Is Good!
by Nigel Cheshire.................................6
INDUSTRY COMMENTARY

Building the Right Project Team
The rule of fi ve
 by Robert Shinbrot.................................12

ARCHITECTURE

Performance Management 101
for WebLogic Portal
An introduction
by Rini Gahir.............................14

CODE

The Paradox of
Writing Perfect Code
Static code analysis versus Santa Claus
and the Easter Bunny
by Ben Chelf..............................20

WEBLOGIC

Confi guring WebLogic
Server 9.x JDBC
Data source connections
by Deepak Vohra..............................26

JAVA

Are Vendors Becoming More in
Charge of Java Enterprise Edition...
…or is Sun losing control over Java EE?
by Andrei Iltchenko.............................34

DESKTOP JAVA VIEWPOINT

Software Should Be More
Hard Wearing
by Joe Winchester.............................46

WEB SERVICES

Enterprise Mashup Services
Part 1: Real-World SOA or Web 2.0 Novelties?
by Ric Smith..............................48

JSR WATCH

Ringing in the New Year
by Onno Kluyt.............................60

54
by Michael Birken

FeaturesFeaturesFeatures

EJB 3 Transactions
by Raghu R. Kodali and Jonathan Wetherbee

What Is SCA?
by Simon Laws, Haleh Mahbod,

and Raymond Feng

36

22

JDJ.SYS-CON.com6 January 2007

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Senior Vice President, Editorial and Events:

 Jeremy Geelan jeremy@sys-con.com

Advertising

Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

Advertising Sales Director:

 Megan Mussa megan@sys-con.com

Advertising Sales Manager:

 Andrew Peralta andrew@sys-con.com

Associate Sales Manager:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial

Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Richard Walter richard@sys-con.com

Accounting

Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Customer Relations

Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

n an article in the October edition
of the FTP Webzine “Upside” Peter
Varhol laments the trend toward
per-developer metrics in the soft-

ware development process. “Individual
developer data is stored and available
to be manipulated in less than honor-
able ways,” he says, “and there are
people in enterprises who know how
to take advantage
of such informa-
tion for their own
purposes.”
 Yes Peter, those
people are called
“managers” and
their purposes are
called “manage-
ment.” It’s what
they are supposed to do.
 It’s high time this industry grew up
and, I’m afraid, growing up means
opening up and letting managers see
what developers are up to on a day-to-
day basis. Earlier in his piece Varhol
talks about the “bubble world” that
developers have created for themselves
by encouraging the view that software
development is mysterious, highly
complex, and technical.
 Peter Varhol isn’t the only person
who seems change-averse in this
respect. Other industry commentators
have weighed in on the issue too. Linda
Westfall is president of The Westfall
Team, a consultancy that specializes in
software metrics and software quality
engineering training. “Don’t measure
individuals” she says in her 2005 paper
on software metrics. “The state-of-the-
art in software metrics is just not up

to this yet.” To be fair, she goes on to
explain that what she’s really talking
about is individual productivity metrics
measured in “lines of code per hour.”
True, that wouldn’t seem to be a useful
metric. But that doesn’t invalidate the
idea of looking at any metrics on a per-
developer basis.
 Sam Guckenheimer of Microsoft, in

his book Software
Engineering with
Microsoft Visual
Studio Team System,
says: “Using metrics
to evaluate indi-
vidual performance
is horribly counter-
productive.”
 Joel Spolsky says,

“FogBUGZ does not provide individual
performance metrics for people.”
 So what’s the deal? Why is everyone
so against the idea of measuring the
performance of individual developers?
After all, in just about any other indus-
try, you’ll find per-individual metrics
being applied without so much as a
second thought.
 Take sales for example. Culturally,
you’re unlikely to find any two groups
in a company more diverse than
sales and software development. But
actually, these two departments have
more in common than you might
think. Both work in teams, but are
highly dependent on the performance
and contribution of individual mem-
bers. In fact, oftentimes, the contribu-
tions of one or two “superstars”

–continued on page 10

Viewpoint

Change
Is Good!

I

Nigel Cheshire is CEO of

Enerjy Software, a division of

Teamstudio Inc. He oversees

product strategy and has

been driving the company’s

growth since he founded it

in 1996. Prior to founding

Teamstudio, Inc., Nigel was

co-founder and principal of

Ives & Company, a CRM solu-

tions consultancy. He holds

a Bachelor of Science degree

in computer science from

the University of Teesside,

England.

nigel_cheshire@enerjy.com

Nigel Cheshire
Guest Editor

It’s high time this industry grew up and,
I’m afraid, growing up means opening up
and letting managers see what developers

are up to on a day-to-day basis”

“

JDJ.SYS-CON.com10 January 2007

Viewpoint

–continued from page 6

overshadow the contributions of
everyone else put together. Both
work for extended periods of
time to deliver an outcome. And
both are notoriously difficult to
manage!
 But there’s one significant
difference between these two
groups. Sales teams, especially
inside sales teams, have clear
targets, not just for the outcome
(dollars and cents) but also for
their behavior on a day-to-day
basis. I’ll always remember one of
the most successful sales manag-
ers I’ve ever known early in my
career telling me the secret to
her success, “Manage behavior;
reward results.” In the case of
the inside sales team, the way we
manage behavior is by looking at
call metrics: the number of dials,
total talk time, average call dura-
tion, etc. These are measures of
the desired behavior of the team.
 So, what’s the desired behavior
of the development team and
what metrics can we put in place
to measure it?
 Well, Linda Westfall is right
about one thing: we don’t simply
want to measure lines of code
per hour. That’s not a measure of
productivity; it simply encourages
verbosity! But perhaps we do want
to measure compliance to coding
standards. We might also want to
measure unit test coverage and
density, code complexity, reuse
effectiveness, and defect rates.
 The important thing is that we
should think carefully about what
behavior we want to encour-
age and then put mechanisms
in place to capture the metrics
to track our progress. But here’s

an important and rather subtle
distinction between different
types of metrics. Often, the thing
that makes metrics, especially
per-developer metrics, seem bad
to so many people is that they
when they think about metrics,
they’re thinking about prescrip-
tive metrics. Prescriptive metrics
carry with them a target level of
achievement that defines success.
The problem with prescriptive
metrics is that they encourage
slavish devotion to achievement
of just that metric, sometimes at
the cost of rational thought.
 Joel Spolsky again: “As soon as
you start measuring people and
compensating people based on
things like this, they are going to
start optimizing their behavior to
optimize these numbers, and not
in the way you intended.”
 Coming back to our sales team
example, if you just set a target for
total talk time, without measur-
ing the number of key contacts
that the salesperson talks to, you
encourage the wrong type of
behavior – talking at length with
someone who’s never going to buy
anything, for example.
 The same thing applies in the
software development world.
It’s generally accepted that 100%
code coverage for unit tests isn’t
a good objective. Not only is it
potentially time-consuming to
squeeze the last few percentage
points of coverage out of an appli-
cation, but this is also the sort of
thing that could really encourage
the wrong behavior. Exception
handlers are usually the hardest
parts of the application to unit
test. So what’s the easiest way to
increase your coverage percent-
age? Get rid of your exception

handlers! That way you don’t have
to figure out how to test them.
 Contrast that approach with
the concept of descriptive metrics.
As the name suggests, these
are metrics that we just report,
without any set notion of what’s a
“good” number in absolute terms.
 To pick up the sales team
example again the number of calls
per day and total call time are de-
scriptive metrics. We don’t reward
the team based on these metrics;
we’ve already seen how that
can lead to counterproductive
behavior. However, if we observe
a significant drop in sales by an
individual then these metrics can
provide a clue to the cause of the
problem. Similarly, if a developer
has consistently higher bug rates
than his or her colleagues and
lower unit test coverage then it’s
clear what action needs to be
taken to bring that developer up
to standard.
 Here’s the thing. This software
development industry of ours is
still pretty young. We’re still figuring
some of this stuff out. Blindly try-
ing to apply manufacturing-style
metrics to the software develop-
ment process won’t work. They are
two different processes, and should
be treated as such. But that doesn’t
mean we shouldn’t be striving to
apply some metrics and working
hard to figure out what the metrics
are and how to manage them.
 So, to Mr. Varhol’s target
audience I say fear not. Embrace
change. Don’t stick your head in
the sand and say metrics are a bad
thing. Let’s work together to figure
out what we can measure, and
how we can use those things to
manage ourselves better. After all,
our customers deserve better.

The important thing is that we should think carefully
about what behavior we want to encourage

and then put mechanisms in place to capture the metrics
to track our progress”

“

The important thing is that we should think carefully
about what behavior we want to encourage

and then put mechanisms in place to capture the metrics
to track our progress”

“ top MISCONCEPTIONS that drive
Meet the most misunderstood developer team in the world.

our Crystal Reports dev team crazy

Crystal Reports® is too expensive. Actually, the developer edition is just $5951 USD (or
upgrade for only $3151). Complimentary Crystal Assist support2 provided with purchase.

Crystal Reports doesn’t include a free runtime license. Not true, the developer edition
includes a free runtime license3 for each component engine.

Getting reports on the web is complex. False, the developer edition includes crystalreports.com4

and Crystal Reports Server5 to speed and simplify web reporting deployments.

Crystal Reports only works in Windows®. Not quite, whether you need to create or
deploy reports on Windows, Linux or Unix, we have a Crystal Reports technology for you.

Find out more at: www.businessobjects.com/devxi/misunderstood

1 Suggested retail price. 2 Complimentary access to support engineers and self-help. 3 Includes an unlimited runtime license for internal use of .NET, Java, and COM engines. 4 Includes ten named
user licenses. 5 Includes fi ve named user licenses. The Business Objects logo and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other
countries. All other names or products referenced herein may be the trademarks of their respective owners. © 2006 Business Objects. All rights reserved.

JDJ.SYS-CON.com12 January 2007

hen building the
right project team
to complete a cus-
tom solution there

are many forces at work.
These include business
drivers, technical driv-
ers, and organizational
and political motivations.
Regardless of the business
or organization there are
three basic rules to follow
in building a team to de-
liver a technical solution.
The first is to involve the
business before the team
is even assembled. Each
organization has certain
technology standards
that govern specific tools
and products that can be
used on a given project.
These standards need to be
considered and coordinated
within “governance” manage-
ment when architecting the
solution. The third is the driv-
ing element that will let you
successfully implement any
medium or large-scale project
and that’s to follow “The Rule
of Five.” The Rule of Five is the
basis for choosing the right
number of people to be on
your project team, and if you
follow this rule your team will

deliver the project on time and
on budget.
 Assume you are the project
manager for a newly selected

technical implementation for
a specific line of business that
you’re familiar with. You’ve
been chosen for this effort
because of the confidence that
both the business and tech-
nology departments have in
you to get the job done. Your
past record speaks for itself
and you have an opportunity
to select people currently in
your company as well as aug-
ment the team with new hires

and consultants. Whether your
project requires a medium or
large-scale project team you
should plan your team accord-
ingly. Always plan in five-per-
son team increments.
1. Business/Technical Lead

– This person should be
someone who understands
the business requirements
very well and hopefully was
one of the main authors of
the “Business Requirements
Document.” This individual
should be technically very
strong, but doesn’t necessar-
ily know all the technologies
that have to be deployed to
implement the system.

2. Technical Architect – This
person is responsible for
designing the technical
framework in which the
entire system will be built.
He should be intimately
familiar with all the tech-
nologies required to deliver
the system and be mindful
of all governance require-
ments in your organization.
This is the lead person who
will insure the technical
success of the project.

3. Data Analyst – This person
should be knowledgeable
about all of the data ele-

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Industry Commentary

by Robert Shinbrot

Building the
Right Project Team

W

Robert Shinbrot has managed very

large and complex projects over the

last 20+ years within the Financial

Services Community. Robert has

led the Financial Services Consulting

Practice first at Oracle and most

recently at BusinessEdge Solutions

for the last 5 years.

rshinbrot@businessedge.com

The rule of five

A team that’s too small or too big will
deliver a project on time and over budget or

late and over budget”
“

13January 2007JDJ.SYS-CON.com

ments required for system
implementation as well as
where the data currently
resides in the organization
and how to gain access to it.
This person will coordinate
all DBA requirements and
work with the governance
group in the organization as
well as lead all logical and
physical database design
efforts.

4. Technical Programmer –
This person will be respon-
sible for coding parts of the
system based on the direc-
tion of the Project Manager.
For example, this person
may be the front-end tech-
nical programmer.

5. Technical Programmer –
This person will be respon-
sible for coding parts of the
system based on the direc-
tion of the Project Manager.
For example, this person
may be the application serv-
er programmer.

 The Rule of Five focuses on
any medium or large-scale
project that will have a team
composition based on these
outlines. For example if the
project is scoped to be a me-
dium-sized project the team
composition is one project
manager and a team of five.
If the project is scoped to be
a large-scale project the team
composition is one project
manager and n(team of five)
or either a 10-, 15-, or a 20-
person team. It’s rare that a
project team is larger than 20,
but the same rule holds. Keep-
ing the team composition

as listed above allows each
team of five to work success-
fully on their portion of the
project.
 If your project team is great-
er than 20 people, the Rule of
Five means a team of five to
oversee all project activities
and provide centralized proj-
ect coordination or project
governance as shown in
Figure 1.
 When determining who
will be on your Rule of Five
team follow the basic guide-
lines. The Business Technical
Lead must be someone that is
very senior, has direct contact
with the business, and can
resolve any outstanding busi-
ness issues that come up.
You should handpick this
person from a small list of ap-
plicants. The Technical Archi-
tect must be very senior and
preferably someone you’ve
worked with before. He should
have demonstrated superior
knowledge in all technical

aspects of the project and
be hands-on at all times.
The Data Analyst should
be knowledgeable about ER
tools and the SQL language
being used in the project.
This person should have
worked on other projects in
this group before to reduce
the learning curve. This role
is generally overlooked until
late in the project. The Tech-
nical Programmers tend to
be junior compared to other
members of the team, but
are focused on coding the
application.
 When building your next
project team think in terms
of five and you’ll be able to
maximize your business and
technical capability to deliver
a solution on time and on
budget. A team that’s too
small or too big will either
deliver the project on time
but over budget or late and
over budget. See if the “Rule of
Five” works for you.

 Figure 1 The rule of five

Oversight
Team of 5

Business Lead
Technical Architect

Data Analyst
Two Programmers

Business Lead
Technical Architect

Data Analyst
Two Programmers

Business Lead
Technical Architect

Data Analyst
Two Programmers

Business Lead
Technical Architect

Data Analyst
Two Programmers

Business Lead
Technical Architect

Data Analyst
Two Programmers

Activity 1...Activity (n)

A team that’s too small or too big will
deliver a project on time and over budget or

late and over budget”
“

When building your next project team think in terms
of five and you’ll be able to maximize your business
and technical capability to deliver a solution on time

and on budget”

“

JDJ.SYS-CON.com14 January 2007

ven experienced Java Web
developers are often sur-
prised by how big a leap it is to
develop a portal. The simple,

slick interface that end users see
belies the deep power and complex-
ity provided by commercial products
like BEA WebLogic Portal. This makes
it extremely challenging to diagnose
performance issues when portal ap-
plications go into production.
 This article discusses the per-
formance management challenges
of WebLogic Portal and provides a
starting point for tuning performance
bottlenecks in portal applications.
It assumes some familiarity with the
terminology and functionality of
WebLogic Portal.
 A corporate portal allows a com-
pany to capitalize more effectively
on its digital and human assets while
presenting a first-class Web experi-
ence to its employees, partners and
customers. For this reason, portal
applications are becoming business-
critical and must deliver reliable
performance and scalability. BEA
WebLogic Portal is a leading Java
EE-based portal server that provides
a robust solution for deploying and
running portal applications.

WebLogic Portal Architecture
 BEA WebLogic Portal combines a
unified runtime framework, business
services and lifecycle management
technologies into a complete Web
portal development and delivery
platform. It is designed to scale to
thousands of end users and support
continuous changes.
 Figure 1 shows the architecture of
the WebLogic Portal hierarchy. When
a portal is instantiated, it generates
a taxonomy or hierarchy of portal
resources known as the WebLogic
Portal control tree. The control tree
includes desktops, books, pages and

portlets. As we’ll see, the control tree
provides one of the most important
keys to understanding performance
issues in portal applications.
 The basic building block of the
portal is the portlet, which is a small
portal application, usually depicted
as a small box in the Web page.
They are reusable components that
provide access to applications, Web-
based content and other resources,
and can access and display Web
pages, Web services, applications and
syndicated content feeds.
 A portlet is developed, deployed,
managed and displayed independent
of other portlets. Administrators and
end users can create personalized
portal pages by choosing and arrang-
ing portlets, resulting in Web pages
with content tailored for individuals,
teams, divisions and organizations.
Portlets rely on the portal infrastruc-
ture to access user profile informa-
tion, participate in window and action
events, communicate with other port-
lets, access remote content, look up
credentials and store persistent data.

 Since portlets are servlets, they
share similar re-entrance and per-
formance considerations. A single
portlet instance (that is, a single
instance of the portlet’s Java class)
is shared among all requesters. As
there are a limited number of threads
that process portlets and servlets, it
is important for each portlet to do
its job as quickly as possible so that
response time for the whole page is
optimized.

Understanding the Control Tree
 The WebLogic Portal control tree
represents all of the structural ele-
ments in the portal and acts as the
infrastructure on which a new portal
page will be built. A new control tree
is created (or drawn from cache if it
exists already) during control tree
processing when the portal is instan-
tiated. One of the most significant
impediments to portal performance
lies with the number of controls on
a portal. The more portal controls
(pages, portlets, buttons, etc.) you
have, the larger your control tree

Architecture

by Rini Gahir

Performance Management 101
for WebLogic Portal

E

Rini Gahir is a senior

product marketing man-

ager at Quest Software

and has been working at

the forefront of Java and

Internet technologies in

a wide variety of techni-

cal and business roles for

over a decade.

rini.gahir@quest.com

An introduction

 Figure 1 Hierarchy architecture of WebLogic Portal

OPNET Panorama offers powerful analytics for rapid troubleshooting of complex
Java EE applications. Panorama quickly identifies how application, web, and database
servers are impacting end-to-end performance. With Panorama, you can pinpoint the
source of a problem, so time and money aren't spent in the wrong places.

The world’s most successful organizations rely on OPNET's advanced
analytics for networks, servers, and applications.

OPNET Technologies, Inc. 7255 Woodmont Avenue, Bethesda, Maryland 20814 phone: (240) 497-3000 • e-mail: info@opnet.com • NASDAQ: OPNT

© 2006 OPNET Technologies, Inc. All rights reserved. OPNET is a registered trademark of OPNET Technologies, Inc.

www.opnet.com/panorama

MAKE ANSWERS TO PERFORMANCE PROBLEMS COME TO YOU.

Register for an
Online Webinar

JDJ.SYS-CON.com16 January 2007

Architecture

– and the longer it will take to ren-
der all the components.
 Figure 2 shows a control tree gen-
erated for a typical portal. From the
desktop and shell is created a main
book and six sub-books, which in
turn contain two pages each. Each
page contains two portlets. So, in
total, this portal has a minimum of
42 controls.
 Once the control tree is built and
all the instance variables are set
on the controls, the tree must run
through the lifecycle for each con-
trol before the portal can be fully
rendered. The lifecycle methods are
called in order. That is, all the init()
methods for each control are called,
followed by the loadState() method
for each control, and so on in the
order determined by the position
of each control in the portal’s tax-
onomy.
 Running each control through
its lifecycle requires some overhead
processing time, which, when you
consider that a portal might have
thousands of controls, can grow
exponentially. Thus, you can see
that the larger the portal’s control
tree the greater the performance
hit.

Monitoring Performance
in WebLogic Portal
 Portal performance is generally
measured by the amount of time re-
quired to actually render that portal
and all of its constituent parts when
a visitor clicks an object that sends
a request to the portal servlet.
 The first challenge is simply in
monitoring and measuring overall
performance of the portal. Built-in
management functionality really
does not do a thorough enough job
of this for the entire system, specifi-
cally the individual portal compo-
nents (including portlets and other
code run by the WebLogic Portal
container), connections to any and
all databases, transaction servers,
mainframe systems and other back-
end systems.
 Whatever tool or tools you use
needs to be able to:
• Monitor the complex, dynamic

interactions taking place across
the entire workflow and within
individual processes,

• Present the resulting data in a
clear, simple display that high-
lights problems (and where they
occur in the portal workflow),
and allow the administrator to

quickly drill down – to individual
portlets and transactions if need
be – to the source of the problem,
and

• Summarize overall performance
as well as performance in the
key portal workflow areas: portal
servlet, control tree processing,
JSP backing files, Java page flows,
portlets, connections to back-end
systems and portal services.

What to Monitor and
Common Issues
 There are several potential areas
that can affect portal performance
and availability. The following
serves as a useful blueprint for
what to monitor and the common
problems that can manifest
themselves.

Portal Request Response Time
 Since portals are personalized
Web applications, it is important
to measure portal performance
as an end user would experience
it. By monitoring live transaction
response times, the portal adminis-
trator can take proactive measures
to address a problem before it
impacts users and the business.

 Figure 2 Typical control tree for a portal instance

JDJ.SYS-CON.com18 January 2007

Architecture

Control Tree Processing
 Remember that the control tree
represents all of the structural
elements in the portal and acts as
the infrastructure on which a new
portal page will be built. Almost all
of the elements in the user-interface
design correspond to controls in this
tree. Get visibility into the complex
processes taking place within the
control tree as well as its interac-
tions with the “View” and “Control”
elements of the portal. Figure 3
shows how a performance tuning
tool might highlight a control tree
performance issue.

Portlets
 Applications, JSP-based portlets,
Web Services or other available
J2EE resources can all be exposed as
portlets. If a performance slowdown
occurs, application support person-
nel need the ability to determine
quickly which individual portlets
may be responsible. Within the port-
let lifecycle, handling post back data
and pre-rendering are processes that
are especially important to monitor
for performance.

Portal Framework Services
 JSP backing files work in conjunc-
tion with JSPs, allowing separation
of the presentation logic from the
business logic. Always run before

the JSPs, the backing files typically
contain a great deal of custom ren-
dering code (and additionally, some
developers make callouts to back-
end systems to fetch additional data
to render). Poor performance is
usually an indication of misbehav-
ing custom rendering code.
 In Java page flows, the page flow
itself is entirely defined by the devel-
oper; slowness can usually be diag-
nosed by the author, and isn’t usually
caused by trouble with any back-end
system. It may also be helpful to cor-
relate the J2EE standard page flows
to the portal control tree processing
architecture to determine which
page flow is tied to which desktop.

WebLogic Portal Services
 The Entitlement system provides
role-based authorization to individ-
ual portal resources. Entitlements
are used heavily by all aspects of
the portal, so any slowness impacts
the whole system. Often, delayed
responses and stalled threads are
caused by trouble in the back-end
systems supporting Entitlements,
such as LDAP. Additionally, entitling
too many objects at a fine level of
granularity can overload the Entitle-
ments system.
 The Personalization service, imple-
mented through advislets, modifies
the information displayed in the

portal preferences. Advislets can use
many mechanisms — an internal
rules engine, explicit personalization
or even events. Overuse of the Per-
sonalization system overall is a com-
mon cause of performance problems.
 The User Profile repository
contains additional user informa-
tion such as contact information.
Often, delayed responses and stalled
threads are caused by trouble in
the back-end systems, such as a
database used for supporting user
profiles.
 The Content Management API
interfaces with a number of com-
mercially available content manage-
ment systems, such as Documen-
tum. When stalled threads occur
here, one of the first things to check
is whether the back-end content
system is performing normally.

Conclusion
 We hope this has been a useful
introduction to the performance
challenges posed by WebLogic Portal
applications. As enterprise portal
offerings grow in popularity and
complexity, so does the challenge
of managing their performance and
availability. With the proper tools and
process, portal-based applications
can be depended upon to consistent-
ly deliver their promised business
value.

 Figure 3 Visualizing control tree performance bottlenecks

A corporate portal allows a company to capitalize more effectively
on its digital and human assets while presenting a first-class
Web experience to its employees, partners and customers”

“

��

��

AJAX for Java

������������������������������������
���
���
�������������������������������������

�������������������������������

����������������������������������
�������������������������������������
���
���

���

�
�
�
�

JDJ.SYS-CON.com20 January 2007

on’t you love looking at a good
piece of code? I’m talking about
the kind of code where the design
is so sound that the code practi-

cally wrote itself, where there were no nasty
surprises at implementation, where it was
100% feature complete and bug-free, and
you didn’t have to patch it up a bunch of
times. Maybe I’m squarely in the land of
Santa Claus and the Easter Bunny, but I
believe, deep down, all developers want to
write that perfect piece of code. Unfortu-
nately, real life has other ideas. Deadlines,
unclear or conflicting requirements,
ridiculous scope, being human – all these
things keep us from the promised land of
perfect code.
 But here’s the rub: though it may be
satisfying to dream about, it’s likely that
you’ll never produce truly perfect code for
real-world applications. You’ll sit down to
write a piece of code, you’ll do the best you
can, taking into account everything you
know about how the system works, how
your piece of code fits into that system,
and so forth. But we all know there will be
mistakes – probably lots of them. And you’ll
do some testing, and the QA guys will do
some testing, and the beta customers will
do some testing, and then poof, the busi-
ness-minded people in your organization
will decide it’s good enough to be released.
At that point, the code isn’t perfect, and ev-
ery time you have to change that released
code, you introduce risk into the system.
Thousands or hundreds of thousands or
millions of people are using it as is, and if
you decide to make changes it might work
differently for those people. This is risky,
and the tools you use to help write your
code must be cognizant of that fact.

Tools for Writing Imperfect Code
 This article is about a certain kind of tool
– static code analysis – that can be used to
help you in writing good code. Not perfect
code, but good code. As introductory com-
puter science classes increasingly move to
Java (even the high school AP computer
science curriculum is Java-based now), the
tools available to C/C++ developers should
move over to Java as well. Over the last de-

cade, as Java exploded in popularity, there
have been tremendous breakthroughs in
the area of practical static code analysis for
defect detection. Today many commercial
tools are available to do static code analysis
of your C, C++, and Java code. I work for
one such tool provider and I’ll discuss our
experience expanding from C/C++ into
Java here. We’ll explore how some of the
concepts we used to analyze C/C++ code
translated into the Java realm and the les-
sons we’ve learned in making this type of
technology practical to help you write good
code. First, I’ll dig into some discussion
of architecture and then I’ll give you my
philosophy on finding bugs automatically
and the true purpose of these tools.

C++ and Java: What’s the Same?
 From a code analysis perspective, C++
and Java have a lot in common. Both
require you to build some representation
of the code into the guts of your analysis
for dataflow analysis. This means breaking
each function or method into basic blocks,
computing a control flow graph, and
having an analysis engine that can push
checks down each possible execution path
in the methods while keeping track of the
relevant variables and their values. With
this, each check can then pull out relevant
constructs while analyzing the code. For
example, if I’m looking for NULL exception
problems, my NULL checker simply looks
for places where objects are compared
against NULL or assigned a NULL value,
and then lets the analysis push down a
path until I see a dereference when that
value is NULL.
 Listing 1 shows an example from the
Struts framework. Notice that on line 171,
the developer compares body against null.
Unfortunately, the developer probably

meant to make that comparison == instead
of !=. In the case where the pointer is null,
the code will skip over the assignment on
line 172 and dereference the body variable
on line 175. Oops. Listing 2 shows you
what that code looks like in the interface
of a static code analysis tool. The analysis
engine pushes the checker down all the
paths in this function. The checker notices
the comparison against null, keeps track
of the body value as being null when the
condition on line 171 is false, and then
reports a problem when it’s derferenced as
null. Simple enough, right?

False Positives and Java
 Well, almost right. The biggest problem
that the designer of any static code analysis
tool faces is false positives. What is a false
positive? Basically, any time the analysis
reports a defect where there is none, that’s
a false positive. Some people call this noise,
but I like to stay away from that term. Noise
is a problem, but it’s a different problem.
To better understand a case that might trip
up a static code analysis tool, take a look at
Listing 3. The struts code from the previous
example has been slightly modified to
introduce a data dependence between the
value of body and the value of body_track-
er. Notice that after the test of body against
NULL, the value of body_tracker will be 5 if
body is not NULL and 12 if body is NULL.
As such, there’s no longer a NULL derefer-
ence on line 177 because it’s guarded by
the check of body tracker. This example is
simple enough, but may fool some simple
analysis engines into reporting the defect
where there really is no problem at all
because there’s no possible execution path
that leads body to be dereferenced when
NULL.
 False positives cause developers to lose
trust in a tool. Why? Because the tool is
wrong, and if it’s wrong more often than
it’s right, eventually the user won’t trust
the tool at all. Fortunately, the techniques
available for reducing false positives in
C/C++ analysis translate rather nicely
into the Java space. We simply provide ad-
ditional checkers to search for “false paths”
through the code – paths that can never

Code

by Ben Chelf
The Paradox of Writing Perfect Code

D

Ben Chelf is chief technol-

ogy officer of Coverity.

Before he co-founded Cov-

erity, he was a founding

member of the Stanford

Computer Science Labora-

tory team that architected

and developed Coverity’s

underlying technology. In

his role at Coverity, Ben

works with organiza-

tions such as the U.S.

Department of Homeland

Security, Cisco, Symantec,

and IBM to improve the

security and quality of soft-

ware globally. He holds an

M.S. and B.S. in computer

science from Stanford

University. Ben frequently

provides expert insight

into software security

and quality to the press,

public audiences, and in

published writings.

Static code analysis versus Santa Claus and the Easter Bunny

21January 2007JDJ.SYS-CON.com

be executed when the program is running.
These additional checkers keep track of data
flow in different ways, and any time they
find a path that can’t be executed, it’s pruned
from the analysis. This “false path pruning”
is a key way to significantly reduce the false
positive rate.

C++ and Java – What’s Different?
 There are a few key differences in analyz-
ing C/C++ code versus Java code. Unlike
C/C++, Java affords us more luxury in
choosing which code to analyze. We chose
to analyze bytecode instead of source code.
There are tremendous advantages to looking
for defects at the bytecode level. The biggest,
of course, is the fact that the code has already
been compiled – you don’t have to deal with
compiling the code and juggling the many
different flavors of build systems out there.
The disadvantage (if you can call it that) of
analyzing bytecode instead of source code
is that you need some way to tie the errors
you find back to the source code. This means
that the bytecode needs to have debugging
symbols in it or the errors you produce won’t
be of much help in actually fixing the code.
 The types of defects that you look for are
also different. Defects in Java code have dif-
ferent runtime implications than their C/C++
counterparts. A NULL pointer dereference
throws an exception in Java and crashes your
system in C/C++. A resource leak in C/C++
happens any time heap-allocated memory
isn’t freed, but in Java, resource leaks oc-
cur under different circumstances – when
clean-up must be done on an object that the
garbage collector can’t be responsible for.

Interprocedural Analysis
 One key feature of the most powerful
static code analysis solutions is their ability
to understand what happens when one

method calls another. This not only helps in
finding more complex defects in the code, it
also reduces the false positive rate because
analysis mistakes are less likely. However,
the analysis of Java introduces a challenge in
this regard because virtually every method
call is, er – virtual. This means that it’s not
so clear which instruction a virtual method
call will jump to when the code is being
analyzed. It depends on the runtime type of
the object invoking the method. While this is
a problem in C++ as well, it tends to be less
systemic due to the fact that most people
developing C++ code (a) don’t always use
objects in their code and (b) don’t make all
their methods virtual. To tackle this problem
with a practical code analysis tool, we’ve
developed techniques to infer the correct
types of objects at runtime to determine
which virtual methods could be instantiated
at any given call site. Of course, our technol-
ogy must make the appropriate trade-offs to
retain as much precision as possible while
still scaling to analyze large real Java sys-
tems. There’s some great research out there
to discuss the academic techniques from
which we draw our ideas for implementing
this in the real world. If you’re interested in
learning more, check Google for “Rapid Type
Analysis” or “Class Hierarchy Analysis.”

Noise
 As I mentioned earlier, false positives are
the number one challenge for static analysis.
The number two challenge, and unfortu-
nately a harder problem to deal with, is
noise. How is noise different from a false
positive? Noise is any issue reported by the
analysis that, while technically correct from
an analysis perspective, is something you
just don’t care about. It’s obvious why this is
so hard – it’s completely subjective! Yet it’s
very important to address this to produce

useful results. Take a look at Listing 4. Notice
that on line 173 there’s an extra space before
the statement. Your static code analysis tool
could report that extra space as a defect,
but I’m willing to bet that most of us would
consider that noise. The analysis isn’t wrong
per se – the statements don’t line up – but I
just don’t care. Sure, this example is extreme,
but there are less extreme cases that can be
equally frustrating – even within checkers
for things like NULL pointer exceptions.
I’ve heard developers say, “Sure, but if that
happens, we’re totally hosed anyway, so it
doesn’t matter that it throws an exception
there!” So the analysis can be spot on, pro-
ducing an actual “defect” that could occur,
but it’s still reporting noise.

What To Look For
 There’s no silver bullet for eliminating
noise, and there will always be a trade-off
between the aggressiveness of an analysis
and its false positive rate. But this brings
me back to my initial point about the risk of
changing your code. The purpose of a static
code analysis tool, whether for C/C++ or for
Java, is to help you find defects that would
hurt the most, and to find them earlier in
the software process. The purpose of these
tools is not to find everything that’s bad
in your code, and that’s a subtle distinc-
tion. There’s too much risk associated with
changing your code to address every little
nitpick a static analysis tool can report. So
when you’re looking to add this type of tech-
nology to your arsenal of tools to help you
ward off the bugs, take a close look at what
it’s going after. More “bugs” aren’t neces-
sarily better. Your time is valuable, and you
don’t want to waste it poring through false
positive-ridden and noisy reports. Fortu-
nately, there are tools out there that are on
your side.

Listing 1
/org/apache/struts/taglib/bean/DefineTag.java

171 if (body != null) {
172 body = body.trim();
173 }
174
175 if (body.length() < 1) {
176 body = null;
177 }

Listing 2
/org/apache/struts/taglib/bean/DefineTag.java

Event branch_null: this.body is null
At conditional (2): this.body != null taking false path
171 if (body != null) {
172 body = body.trim();
173 }
174
Event deref_while_null: this.body dereferenced while null
175 if (body.length() < 1) {
176 body = null;
177 }
178 }

Listing 3

170 body_tracker = 5;

171 if (body != null) {

172 body = body.trim();

173 } else {

174 body_tracker = 12;

175 }

176

177 if (body_tracker != 12 && body.length() < 1) {

178 body = null;

179 }

Listing 4

170

171 if (body != null) {

172 body = body.trim();

173 body_tracker = 12;

174 }

175

JDJ.SYS-CON.com22 January 2007

uch of the work surrounding the design and devel-
opment of enterprise applications involves decisions
about how to coordinate the fl ow of persistent data.
This includes when and where to cache data, when

to apply it to a persistent store (typically the database), how to
resolve simultaneous attempts to access the same data and how
to resolve errors that might occur while data in the database
is in an inconsistent state. A reliable database is capable of
handling these issues at a low level in the database tier, but
these same issues can exist in the middle (application server)
and client tiers as well, and typically require special application
logic. One of the principal benefi ts of using EJB 3 is its support
for enterprise-wide services like transaction management and
security control. In this article, we will explore how EJB 3 offers
transaction services and how you can leverage them to meet
your specifi c requirements.

Understanding Transactions
 A transaction is a group of operations that must be per-
formed as a unit. These operations can be synchronous or
asynchronous, and can involve persisting data objects, sending
mail, validating credit cards, etc. A classic example is a banking
transfer, in which one operation debits funds from one account
(i.e., updates a record in a database table) and another opera-
tion credits those same funds to another account (updates
another row in that same, or a different database table). From
the perspective of an external application querying both ac-
counts, there must never be a time when these funds can be
seen in both accounts. Nor can a moment exist when the funds
can be seen in neither account. Only when both operations
in this transaction have been successfully performed can the
changes be visible from another application context. A group
of operations that must be performed together in this way as a
unit is known as a transaction.
 When the operations in a transaction are performed across
databases or other resources that reside on separate comput-
ers or processes, this is known as a distributed transaction.
Such enterprise-wide transactions require special coordination
between the resources involved and can be extremely diffi cult
to program reliably. This is where Java Transaction API (JTA)
comes in, providing the interface that resources can implement
and to which they can bind, in order to participate in a distrib-
uted transaction. The EJB container is a transaction manager
that supports JTA and so can participate in distributed transac-

tions involving other EJB containers, as well as third-party JTA
resources like many database management systems (DBMS).

The ACID Properties of a Transaction
 Transactions come in all shapes and sizes and can involve
synchronous and asynchronous operations, but they all have
some core features in common, known as their ACID compo-
nents. ACID refers to the four characteristics that defi ne a ro-
bust and reliable transaction: atomicity, consistency, isolation,
and durability. Table 1 describes these four components.
 EJB 3 addresses these requirements by providing a robust JTA
transaction manager and a declarative metadata API that can
be specifi ed on interoperable, portable business components.
Virtually all Java EE applications require transaction services
and EJB brings them to the application developer in a very slick
package. From its inception, the EJB framework has provided
a convenient way to manage transactions and access control
by letting the developer defi ne the behavior declaratively on a
method-by-method basis. Beyond these container-provided
services, EJB 3 allows developers to turn control over to the
application to defi ne transaction event boundaries and other
custom behavior.

EJB 3 Transaction Services
 The EJB 3 transaction model is built on this JTA model, in
which session beans or other application clients provide the
transactional context in which enterprise services are per-
formed as a logical unit of work. Enterprise services in the Java
EE environment include the creation, retrieval, updating and
deletion of entities; the sending of JMS messages to the queue;
the execution of MDBs; the fi ring of mail requests; the invoca-
tion of web services; and JDBC operations.
 EJB 3 provides a built-in JTA transaction manager, but
the real power lies in the declarative services EJB offers to
bean providers. Using metadata tags instead of program-
matic logic, bean providers can seamlessly participate in JTA
transactions and declaratively control the transactional be-
havior of each business method on an enterprise bean. EJB 3
extends this programming model by providing explicit sup-
port for both JTA transactions and non-JTA (resource-local)
transactions. Resource-local transactions are restricted to a
single resource manager, such as a database connection, but
may result in a performance optimization by avoiding the
overhead of a distributed transaction monitor. In addition,

M

Raghu R. Kodali is consult-

ing product manager and

SOA evangelist for Oracle

Application Server. He

leads next-generation SOA

initiatives and J2EE feature

sets for Oracle Application

Server, with particular

expertise in EJB, J2EE deploy-

ment, Web services, and

BPEL. He holds a Masters

degree in Computer Science

and is a frequent speaker

at technology conferences.

Raghu is also a technical

committee member for

the OASIS SOA Blueprints

specifi cation, and a board

member of Web Services

SIG in OAUG. He maintains

an active blog at Loosely

Coupled Corner (www.

jroller.com/page/raghu-

kodali).

 raghu.kodali@oracle.com

by Raghu R. Kodali
and Jonathan Wetherbee

Feature

EJB 3
Transactions

Understanding and using transactions
with EJB 3

23January 2007JDJ.SYS-CON.com

application builders may leverage the container-provided
(JTA-based) services for automatically managing transac-
tions, or they may choose to take control of the transaction
boundaries and handle the transaction begin, commit and
rollback events explicitly. Within a single application, both
approaches may be used alone or in combination if desired.
Whereas the choice of whether to have the container or the
application itself demarcate transactions is defined on the
enterprise bean, the decision of which type of transaction
model to use – JTA or resource-local – is determined when
a given EntityManager is obtained from within an applica-
tion. The persistent objects in the game – the entities – are
entirely, and happily, unaware of their governing transaction
framework. The transactional context in which an entity
operates is not part of its definition, so the same entity class
may be used in whatever transactional context the applica-
tion chooses, provided an appropriate EntityManager is
created to service the entity’s life cycle events.
 The EJB 3 container offers declarative demarcation of trans-
action events, along with the option to demarcate transaction
events explicitly in the bean or in the application client code.
Let’s consider these two approaches separately, beginning with
the default option: leveraging container-managed transaction
(CMT) demarcation using declarative markup.

Container-Managed Transaction (CMT) Demarcation
 EJB 3 provides built-in transaction management services
that are available by default to session beans and MDBs. The
container demarcates transaction boundaries and automati-
cally begins and commits transactions based on declarative
metadata provided by the bean developer.
 When an EJB declares its transactional behavior in meta-
data, the container interposes on calls to the enterprise bean’s
methods and applies transactional behavior at the session
bean’s method boundaries. One of a fixed set of options may
be specified for each method. The default behavior provided
by the container is to check, immediately before invoking
the method, whether a transaction context is associated with
the current thread. If no transaction context is available, the
container begins a new transaction before calling the method.
If a transaction is available, the container allows that transac-

tion to be propagated to the method call and made available
to the method code. Then, upon returning from the method
invocation, the container checks again. If the container was
responsible for creating a new transaction context, it automati-
cally commits that transaction after the method is exited (or, if
an exception is thrown by that method, it rolls back the transac-
tion it began). If it did not create the transaction, then it allows
the transaction to continue unaffected. By interposing on the
bean’s method calls, the EJB container is able to apply transac-
tional behavior at run time that was specified declaratively at
development time.
 The default behavior described above is specified by the
REQUIRED transaction attribute. You can attribute any one of
the six demarcation options shown in Table 2 to any method on
a session bean.
 All six attributes are typically available for session bean
methods, though certain attributes are not available on a
session timeout callback method, or when the session bean
implements javax.ejb.SessionSynchronization. MDBs sup-
port only the REQUIRED and NOT_SUPPORTED attributes.
Here is an example of how you would specify the transac-
tion behavior on a session bean method to override the
transaction behavior specified (or defaulted) at the bean
level:

@TransactionAttribute(TransactionAttributeType.SUPPORTS)

public CustomerOrder createCustomerOrderUsingSupports(Customer

customer)

throws Exception { ... }

 Table 3 illustrates an EJB’s transactional behavior, dependent
on its transaction attribute and the presence or absence of a
transactional context at the time the session method is called.

Bean-Managed Transaction (BMT) Demarcation
 For some enterprise beans, the declarative CMT services
may not provide the demarcation granularity they require.
For instance, a client may wish to call multiple methods on a
session bean without having each method commit its work
upon completion. In this case, the client has two options: it can
either instantiate its own JTA (or resource-local) transaction,
or it can ask the session bean to expose transaction demarca-
tion methods that the client can call to control the transaction
boundaries itself.
 To address this latter requirement, EJB offers enterprise
beans a convenient way to handle their demarcation of trans-
action events. To turn off the automatic CMT demarcation
services, enterprise beans simply specify the @Transaction
Management(TransactionManagementType.BEAN) annota-
tion or assign the equivalent metadata to the session bean in
the ejb-jar.xml file. With BMT demarcation, the EJB container
still provides the transaction support to the bean. The primary
difference is that the bean makes explicit calls to begin, com-
mit and roll back transactions instead of using CMT attributes
to declaratively assign transactional behavior to its methods.
Also, the container does not propagate transactions begun by a
client to beans that elect to demarcate their own transactions.
While any given enterprise bean must choose one plan or the
other (CMT vs. BMT demarcation) for its methods, both types
of beans may interact with each other within a single transac-
tion context.
 In the last part of this article, we discuss JPA entity transac-
tion behavior.

Jonathan Wetherbee is a

consulting engineer and tech

lead for EJB development

tools on Oracle’s JDeveloper

IDE. He has over 12 years of

experience in development

at Oracle, having built a

variety of O/R mapping tools

and holding responsibility

for Oracle’s core EJB toolset

since EJB 1.1. In 1999, he

received a patent for his work

on integrating relational da-

tabases in an object-oriented

environment.

 Jon is co-author of

Beginning EJB 3 Application
Development: From Novice
to Professional (Apress,

2006), and enjoys speaking

at user groups on EJB and

related topics. Jon holds a

BS in cognitive science from

Brown University.

jon.wetherbee@oracle.com Table 1 The ACID Properties of a Transaction

Feature Description
Atomicity A transaction is composed of one or more operations

 that are performed as a group, known as a unit of

 work. Atomicity ensures that at the conclusion of the

 transaction, these operations are either all performed

 successfully (a successful commit), or none of them are

 performed at all (a successful rollback).

Consistency A consistent transaction has data integrity. Consistency

 ensures that at the conclusion of the transaction, the

 data is left in a consistent state, so that database

 constraints or logical validation rules are not left in

 violation.

Isolation Transaction isolation specifies that the outside world

 is not able to see the intermediate state of a transaction.

 Outside programs viewing the data objects involved in a

 transaction must not see the modified data objects until

 after the transaction has been committed.

Durability The changes that result when a transaction is committed

 must become visible to the other applications.

JDJ.SYS-CON.com24 January 2007

How Entities Become Associated with a Transaction Context
 From the preceding discussion about how the EJB server
acts as a transaction coordinator in associating resources
with a transaction context, you may have realized that a
JPA entity’s persistence context is the resource that gets
associated with a transaction. In this way, a persistence
context is propagated through method calls so entities in
a persistence unit can see each other’s intermediate state,
through their common persistence context, if they are
associated with the same transaction context. Also, the
restriction that only one persistence context for any given
persistence unit must be associated with a given transac-
tion context ensures that for any entity of type T with iden-
tity I, its state will be represented by only one persistence
context within any transaction context. Within an applica-
tion thread, only one transaction context is available at
any moment, but the EJB server is free to dissociate one
persistence context from that thread and associate a new
persistence context for the same persistence unit to satisfy
transaction isolation boundaries. When the EJB server does
this, the newly instantiated persistence context is not able
to see the intermediate changes made to any entities as-
sociated with the suspended persistence context.

Container-Managed vs.
Application-Managed Persistence Context
 The persistence services in EJB 3 let you opt out of con-
tainer-managed entity persistence altogether and manage
the transaction life cycles of your entities explicitly within
your application code. When an EntityManager is injected (or
looked up through JNDI), it comes in as a container-managed
persistence context. The container automatically associates
container-managed persistence contexts with any transaction
that happens to be in context at the time that the EntityMan-
ager is injected. Should an application wish to control how or
whether its persistence contexts are associated with transac-
tions, it may obtain an EntityManagerFactory (again, through
container injection or JNDI lookup) and explicitly create the
EntityManager instances that represent their persistence
contexts. An application-managed persistence context is used
when the EntityManager is obtained through an EntityMan-
agerFactory—a requirement when running outside the Java
EE container.

Transaction-Scoped Persistence Context vs.
Extended Persistence Context
 When an EntityManager is created, you may specify
whether the persistence context that it manages should be
bound to the life of a transaction, or whether it should span
the life of the EntityManager itself. A persistence context
that is created when a transaction is created, and destroyed
when the transaction ends, is known as a transaction-scoped
persistence context. A persistence context that is created
at the time it is injected into the bean (or bound through a
JNDI lookup), and is not destroyed until the EntityManager
instance is itself destroyed, is called an extended persistence
context. Only stateful session beans may use extended per-
sistence contexts. At the time an EntityManager instance is
created, its persistence context type is defined, and it may not
be changed during the EntityManager’s lifetime. The default
type is transaction-scoped; to inject an EntityManager by
specifying an extended persistence context, you may specify
the injection directive with the following:

@PersistenceContext(type = PersistenceContextType.EXTENDED)

private EnterpriseManager em;

or you may define a persistence-context-ref element in the
XML descriptor.

Summary
 In this article, we began with a discussion of the concepts
essential to all transaction behavior, and we then explored
both the built-in, declarative features offered by the EJB
container, as well as options to bypass this support and
coordinate transactions in application code. We concluded by
describing the ways that JPA entities can interact with EJBs in
a transactional environment.
 Now that you are familiar with how to set up and use EJB 3
transactions, you may wish to explore the many related areas
also introduced in the EJB 3 and JPA. For an examination
of these features, with code samples, check out Beginning
EJB 3 Application Development: From Novice to Professional
(Apress, 2006).

Feature

 Table 2 Container Transaction Attribute Definitions

Transaction Attribute Behavior
REQUIRED This is the default transaction attribute value. Upon entering

 the method, the container interposes to create a new

 transaction context if one is not already available. If the

 container created a transaction upon entering the method, it

 commits that transaction when the method call completes.

MANDATORY A transaction must be in effect at the time the method is called.

REQUIRES_NEW The container always creates a new transaction before executing

 a method thusly marked.

SUPPORTS This option is basically a no-op, resulting in no additional work

 by the container. If a transaction context is available it is used by

 the method. If no transaction context is available, then the

 container invokes the method with no transaction context.

NOT_SUPPORTED The container invokes the method with an unspecified

 transaction context.

NEVER The method must not be invoked with a transaction context.

 Table 3 Client and Bean Transaction States for Each of Six Transaction Attributes

Transaction Client’s Transaction Associated Transaction Associated
Attribute Transactions with Business Method with Resource Managers
MANDATORY None Error N/A
 T1 T1 T1

NEVER None None None
 T1 T1 T1

NOT_SUPPORTED None None None
 T1 T1 T1

REQUIRED None T2 T2
 T1 T1 T1

REQUIRES_NEW None T2 T2
 T1 T3 T3

SUPPORTS None None None
 T1 T1 T1

JDJ.SYS-CON.com26 January 2007

ebLogic Server 9.x provides
database connectivity
with data sources. A data
source is a pool of database

connections from which a connection
can be obtained. A data source can be
configured separately or as a multi-
datasource. A multi-data source is col-
lection of data sources. A data source
is configured with a JNDI binding. A
DataSource object is obtained with a
JNDI lookup. A Connection object can
be obtained from a DataSource object
with the getConnection() method.
WebLogic Server provides an admin-
istration console to configure a data
source. WebLogic Server 9.x includes
Type 4 JDBC drivers from DataDirect
for DB2, Informix, Microsoft SQL
Server, Sybase, and Oracle databases.
JDBC drivers for other databases
can be incorporated in the server by
including the JAR files for the JDBC
drivers in the server classpath.
 New JDBC features in WebLogic
Server 9.0 include support for JDBC
3.0, multiple JNDI names for a data
source, and support for a Logging
Last Resource transaction option. SQL
Statement Timeout has been added
to the connection pool configuration.
SecondsToTrustAnIdlePoolConnec-
tion and PinnedToThread connection
pool properties, which we’ll discuss
below, have been added to improve
data source performance. The con-
nection request failover feature has
been improved. Statistics collection
has been added for the different con-
nection parameters for performance
diagnostics. New features have been
added to WebLogic Type 4 JDBC driv-
ers and there’s new identity-based
connection pooling. Transaction,
diagnostic, and security tabs are now
part of the administration console for
configuring a data source.

Setting the Environment
 Download WebLogic Server 9.1. To
install the application server double-
click on the server910_win32 applica-
tion. Click on the Next button in the
BEA Installer. Select Create a New BEA
Home in the Choose BEA Home Di-
rectory frame and specify a directory
in the BEA Home Directory field. Click
on Next. In the Choose Install Type
frame select Complete and click on
the Next button. Select any optional
tools if required in the Optional Tools
frame and click on the Next button. In
the Choose Product Directory frame

select the default Product Installation
Directory and click on the Next but-
ton. Click on Next in the Create short-
cut locations frame. BEA WebLogic
Server gets installed.
 Download the JDBC driver for
the database. We’ll configure JDBC
connectivity with the MySQL data-
base. So install the MySQL database
and download the JDBC driver
Connector/J.
 Extract the MySQL JDBC driver zip
file to a directory. Add the MySQL
JDBC driver JAR file mysql-connec-
tor-java-3.1.11-bin.jar file to the
CLASSPATH variable of the <weblog-
ic91>\samples\domains\wl_server\
bin\startWebLogic script file. <we-
blogic91> is the directory in which
WebLogic Server 9.1 is installed.
Double-click on the <weblogic91>\
samples\domains\wl_server\startWe-
bLogic to start the WebLogic exam-
ples server.

Creating a Data Source
 A data source is a pool of JDBC
connections from which a connection
can be obtained with the getConnec-
tion() method of a DataSource object.
In this section we’ll create a data
source in the administration console.
Access the administration console
with the URL http://localhost:7001/
console. In the administration con-
sole select the node Services>JDBC>
DataSources.
 To create a new JDBC data source
click on New in the Data Sources
table (see Figure 1).
 Specify a data source name in
the Create a New JDBC Data Source
frame and a JNDI name for the data
source. A data source is bound on a
JNDI tree with a JNDI name. Select
a Database Type. We’ll create a data
source with the MySQL database.

WebLogic

by Deepak Vohra

Configuring WebLogic
Server 9.x JDBC

W

Deepak Vohra is a

Sun Certified Java 1.4

Programmer and

a Web developer.

dvohra09@yahoo.com

Data source connections

 Figure 1 JDBC>data sources

 Figure 2 Creating a new data source

27January 2007JDJ.SYS-CON.com

Select MySQL as the Database Type.
Select MySQL’s driver (Type 4) as the
database driver and click on Next (see
Figure 2).
 A data source can be configured
with any of the commonly used
databases. WebLogic provides Type
4 JDBC drivers from DataDirect for
DB2, Informix, Oracle, SQL Server,
and Sybase. The DataDirect drivers
are pre-installed in the <weblog-
ic9.1>/server/lib directory (see Figure
3). The different JDBC Type 4 drivers
included with WebLogic Server are
listed in Table 1.
 Databases other than those for
which a JDBC driver is included
can also be selected. If a JDBC driver
other than the WebLogic driver is
selected add the driver zip/JAR file to
the CLASSPATH variable in the start-
WebLogic script (see Figure 4).
 In the Transaction Options frame
the transaction attributes of the data
source are specified. If a XA driver is
selected global transactions are au-
tomatically supported with the two-
phase commit transaction protocol.
A global transaction, or a distributed
transaction, is a transaction that in-
volves two or more transactions over
multiple (or single) resource manag-
ers (a RDBMS database is a resource
manager). A global transaction is
managed by a Transaction Manager
using JTA. For a non-XA data source
to support global transactions, check
the Global Transactions checkbox. Se-
lect the protocol that supports global
transactions. The different transac-
tion protocols are listed in Table 2.
 In the Transaction Options page
click on Next (see Figure 5).
 In the Connection Properties
frame specify the Database Name,
test for the default database instance.
Specify Host Name as localhost, Port
as 3306, and user name as root. A
password isn’t required for the root
username. Click on the Next button
(see Figure 6).
 In the Test Database Connection
frame the driver class name, con-
nection URL, and username for the
MySQL database are specified. Click
on the Test Database Configuration
button to test the connection with the
database (see Figure 7).
 A message gets displayed indi-
cating if a connection has been
established. If database doesn’t get
connected an error message gets
displayed. Click on the Next button.

 In the Select Targets frame select a
server where the data source will be
deployed. To deploy to the examples
server, select examplesServer and click
on the Finish button (see Figure 8).
 A data source gets configured and
added to the Data Sources table (see
Figure 9).
 Click on the Activate Changes but-
ton to make the data source available
to applications in the server.

Configuring a Data Source
 In this section the data source created
in the last section will be configured. Se-
lect the data source to configure in the
Data Sources table. Select the Configu-
ration tab (selected by default). In the
Configurations frame the data source
JNDI name can be modified (see Figure
10).
 The other configuration options for
a data source are listed in Table 3.
 To configure the connection pool
associated with data source select the
Connection Pool link. Initial capacity,
maximum capacity, and capacity incre-
ment can be set in the connection pool
configuration (see Figure 11).
 Some of the connection pool set-
tings are listed in Table 4.
 The transaction protocol settings
can be configured with the Transac-
tion link. Monitoring statistics can be
collected with the Diagnostics link
(see Figure 12).

 Figure 3 Specifying data source properties Figure 4 Databases supported

 Table 1 WebLogic Type 4 JDBC Drivers

Database Versions Supported Driver Classes Connection URL
DB2 DB2 UDB 7.x, 8.1, and 8.2 on Linux, XA – weblogic.jdbcx.db2.DB2DataSource On Windows, Unix, Linux-
 Unix, and Windows. Non-XA – weblogic.jdbc.db2.DB2Driver jdbc:bea:db2://
 db2_server_name:
 port;DatabaseName=database

Informix Informix 9.4 and later XA – weblogic.jdbcx.informix. jdbc:bea:informix://dbserver1:
 InformixDataSource 1543;

 Non-XA – weblogic.jdbc.informix. informixServer=dbserver1;
 InformixDriver databaseName=dbname

MS SQL Server MS SQL Server 7.0, XA – weblogic.jdbcx.sqlserver. jdbc:bea:sqlserver://dbserver:
 SQL Server 2000(SP1, SP2, and SP3a) SQLServerDataSource port

 Non-XA – weblogic.jdbc.sqlserver.
 SQLServerDriver

Oracle Oracle 9i (R1 and R2), Oracle 10g (R1) XA – weblogic.jdbcx.oracle. jdbc:bea:oracle://dbserver:port
 OracleDataSource
 Non-XA – weblogic.jdbc.oracle.OracleDriver
Sybase Sybase Adaptive Server 11.5, 11.9, XA – weblogic.jdbcx.sybase. jdbc:bea:sybase://dbserver:port
 12.0, 12.5, 15. SybaseDataSource

 Non-XA – weblogic.jdbc.sybase.SybaseDriver

 Table 2 Transaction Protocols

Transaction Protocol % discount
Logging Last Resource (LLR) LLR optimization provides better performance than a XA JDBC driver
 for insert, update, and delete operations. For read operations performance
 is better with an XA driver. Recommended over two-phase commit.
Two-Phase Commit Emulates participation in a global transaction using JTA.
One-Phase Commit The default setting. With one-phase commit only one resource can
 participate in the global transaction.

 Figure 5 Selecting transaction options

JDJ.SYS-CON.com28 January 2007

 Some of the data source profiles that
can may be collected are listed in Table
5.
 To monitor a data source select the
Monitoring tab. To administer the
WebLogic Server instances to which
the data source is deployed select
the Control tab. In a deployed server
instance the statement cache can be
cleared and server can be suspended
or shut down.

Creating a Multi-Data Source
 A multi-data source is an abstract
group of data sources, which provides
failover and load balancing around
data sources. A multi-data source
has a JNDI binding similar to a data
source. To create a multi-data source
click on the Services>JDBC>Multi
Data Sources link in the administra-
tion console (see Figure 13).
 In the Multi Data Sources table
click on the New button to create a

new multi-data source (see Figure
14).
 In the Configure the Multi Data
Source frame specify a data source
name and a JNDI name for the data
source. Select the algorithm type as
Failover or Load Balancing. Click on
the Next button (see Figure 15).
 In the select Targets frame select
the examplesServer or another server
to deploy the multi-data source to.
Click on the Next button (see Figure
16).
 In the Select Data Source Type
frame select XA driver for an XA data
source or a non-XA driver for a non-
XA data source. Click on the Next
button (see Figure 17).
 In the Add Data Sources frame add
data sources from the Available list to
the Chosen list. If new data sources
are required click on the Create a
New Data Source button. Then click
on the Finish button (see Figure 18).

WebLogic

 Figure 6 Specifying connection properties

 Figure 7 Testing the JDBC connection

 Figure 8 Deploying a data source on a server

 Figure 9 New data source

 Figure 10 Data source configuration

 Figure 11 Setting connection pool attributes

 Figure 12 Specifying profile collection

 Table 3 Data Source Configuration Options

Data Source Setting Description
Row Prefetch Enabled For an external client, row pre-fetch fetches multiple rows from the server

 to the client in a single server access, improving performance.

Row Prefetch Size If row pre-fetching is enabled, specifies the number of rows to fetch with
 row pre-fetching. Optimal size depends on the query.

Stream Chunk Size Specifies the data chunk size for streaming data types.

JDJ.SYS-CON.com30 January 2007

 A new data source gets configured
and added to the Multi Data Sources
table. Click on the Activate Changes
button to make the data source avail-
able to applications (see Figure 19).
 A multi-data source can be con-
figured by selecting the multi-data
source link. The targets to which the
multi-data source is deployed can
be configured with the Targets tab.
The data sources in the multi-data
source can be configured with the
Data Sources link in the Configu-
ration tab. The multi-data source
JNDI name can be modified in the
Configuration>General frame. The
Algorithm Type specifies the algo-
rithm used to select a data source
from which a connection is obtained.
If the algorithm type is Failover,
connection requests are sent succes-
sively to the data sources in the list
until a connection is obtained or the
end of the data source list is reached.
If the algorithm type is a Load Bal-
ancing connection request the load
is distributed evenly over the data
sources in the list. If load balancing
is the selected connection, failover
is also provided with the connection
requests being sent to different data

sources in the list until a connection
gets established or the end of the
data source list is reached (see Figure
20).
 A multi-data source also provides
the Failover Request If Busy, Failover
Callback Handler, and Test Frequen-
cy settings. For a multi-data source
with the Failover algorithm if Failover
Request If Busy is selected the con-
nection request is sent to the next
data source if all the connections in
a data source are busy. The Failover
Callback Handler specifies the ap-
plication class to handle the callback
sent when a multi-data source is
ready to send a Failover connection
request to another data source. Test
Frequency specifies the interval in
x number of seconds after which
connections are tested. If a connec-
tion fails the connection is closed
and reopened. If the connection fails
again the connection is closed (see
Figure 21).

Performance Tuning JDBC
 Some of the JDBC design consid-
erations to improve performance
include the selection of the JDBC
driver. The WebLogic Type 4 JDBC

WebLogic

 Figure 13 JDBC>multi data sources

 Figure 14 Creating a new multi-data source

 Figure 15 Specifying multi-data source attributes

 Figure 16 Deploying data source

 Figure 17 Selecting data source type

 Figure 18 Adding data sources to a multi-data source

 Figure 19 A new multi-data source

31January 2007JDJ.SYS-CON.com

drivers from DataDirect provide
comparable performance. The
connection pooling provided by We-
bLogic Server data sources improves
performance by keeping a pool of
connections available for JDBC
applications. Connection don’t
have to be opened and closed for
each client. Tune the number of con-
nections by setting the Initial Capac-
ity equal to Maximum capacity in a
connection pool. Maximize the reuse
of connections rather than closing
and opening connections. A con-
nection may be pinned to a thread
by setting the PinnedToThread
configuration pool attribute. Close
connections after a connection is
not required.
 Test Connections on Reserve tests
connections before making a con-
nection available to a client,
but connection testing can reduce
performance. To prevent frequent
connection testing set the connec-
tion pool attribute Seconds to Trust
an Idle Pool Connection, which
specifies the number of seconds for
which a connection returned by a
client isn’t tested with a SQL query.
Data source performance can be im-
proved by selecting Row Prefetch
Enabled and an optimal pre-fetch
size in configuring a data source.
Row pre-fetching improves perfor-
mance by fetching multiple rows
from the server to an external client.
Caching statements improves
performance by reusing statements
rather than creating new ones.
Statement caching is specified in
the connection pool configuration.

Developing a JDBC JSP Application
 In this section we’ll develop a
JSP application to retrieved data from
a MySQL database table with the data
source configured in the Creating a
Data Source section. First, create an
example database table in the MySQL
database. Access the MySQL database
with the command mysql.

>mysql

 To create a database table in the test
database instance login to the test data-
base.

mysql>use test

 Create a table, Catalog with the SQL
script in Listing 1.
 Create a JSP, catalog.jsp. In the JSP
import the java.sql, javax.sql, java.util,
and javax.naming packages.

<%@ page

import=”java.sql.*,javax.sql.*,java.

util.*,javax.naming.*”

%>

 Create a InitialContext object.

 Table 4 Connection Pool Settings

Connection Pool Setting Description
Initial Capacity The initial number of connections in the connection pool. Also specifies

 the minimum number of available connections in the connection pool.

Maximum Capacity The maximum number of connections in the connection pool.

Capacity Increment The number of connections added to the connection pool when
 connections aren’t available in the connection pool.

Statement Cache Type Specifies the algorithm used to cache prepared statements. If the value
 is LRU, the least recently used statement in the cache is replaced when
 a new callable or prepared statement is created. If the value is FIXED, a
 fixed number of callable and prepared statements are cached.

Statement Cache Size Specifies the number of prepared and callable statements in the cache.
 WebLogic Server performance increases by reusing statements in the
 cache rather than reloading statements. Each connection in the

 connection pool has a statement cache.

Test Connections on Reserve If the Test Connections on the Reserve checkbox is selected the
 connections are tested before being given to the client. Test is required
 for connection pools in a multi-data source created with the Failover
 algorithm. If Test Connections on Reserve is selected Test Table Name

 should also be specified.

Test Frequency Specifies the seconds interval to test unused connections in a connection
 pool. If the test fails the connection is closed and reopened. If the test fails
 again, the connection is closed. If Test Frequency more than 0 is specified
 Test Table Name should also be specified.

Test Table Name The database table to use to test connections. To improve testing specify
 a table with few/no rows. The SQL query to test connection may be

 specified with: SQL <query>. <query> is the query to use to test the data-
 base connection.

Init SQL Specifies the SQL statement to use to initialize a connection with a
 database. The SQL statement is specified with: SQL <sql statement>. <sql

 statement> is the SQL statement to use to test the connection. A database
 table canbe specified by not specifying ‘SQL’ at the start of the field. If a
 database table is specified a database connection is tested with the SQL
 statement “SELECT count(*) from InitSQL”

Shrink Frequency Specifies the wait time for reducing the connection pool size to a pre-
 incremented value.

Connection Creation Specifies the number of seconds between attempts to establish a
Retry Frequency connection with a database.

Inactive Connection Timeout Specifies the number of seconds after which an unused connection is
 returned to the connection pool.

Login Delay Specifies the number of seconds to delay before establishing a connection
 with a database. Used for database servers that can’t handle successive
 connection requests.

Maximum Waiting for Specifies the maximum number of connection requests waiting to obtain a
Connection connection from the connection pool.

Connection Reserve Timeout Specifies the number of seconds after which a connection request will
 time out.

Statement Timeout Specifies the number of seconds after which a statement will time out.

 Figure 20 Configuring a multi-data source

JDJ.SYS-CON.com32 January 2007

InitialContext ctx=new InitialContext();

 Create a DataSource object from the
JNDI name of the MySQL data source.

DataSource ds=(DataSource)ctx.lookup(“jdbc/

MySQLDS”);

 Obtain a JDBC connection from the
DataSource object.

Connection connection=ds.getConnection();

 Create a Statement object from the
Connection object.

Statement stmt=connection.createStatement();

 Run a SQL query with the execute-
Query() method to return a ResultSet
object. Specify a SQL query that selects
all of the columns in the example data-
base table Catalog.

ResultSet resultSet=stmt.

executeQuery(“Select * from

Catalog”);

 Create an HTML table with a column

corresponding to each of the rows in
the result set. Add a header row to the
HTML table. Iterate over the result set
and add row values to the HTML table.
 The JSP, catalog.jsp, to generate a
HTML table from the example database
table with the data source configured in
the WebLogic Server is in Listing 2.
 To run the JSP in WebLogic Server
copy the JSP to the <weblogic91>\sam-
ples\server\examples\build\mainWe-
bApp directory. Invoke the JSP with the
URL http://localhost:7001/catalog.jsp.
The JSP runs in WebLogic Server and
generates an HTML table (see Figure
22).

Conclusion
 WebLogic Server 9.0/9.1 has a new
feature, multi-data source, a group of
data sources with a JNDI name binding.
A multi-data source facilitates maxi-
mum data source availability. A separate
connection pool configuration in Web-
Logic Server 8.1 has been removed. The
data source configuration in WebLogic
Server 9.x provides enhanced connec-
tion request failover and load balancing
between data sources.

WebLogic

 Figure 21 Specifying multi-data source attributes

 Figure 22 Output from the JDBC application

Listing 1: Catalog.sql

CREATE TABLE Catalog(CatalogId INTEGER
PRIMARY KEY, Journal VARCHAR(25), Publisher VARCHAR(25),
 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25));

INSERT INTO Catalog VALUES(ʻ1ʼ, ʻOracle Magazineʼ, ʻOracle
Publishingʼ, ʻNov-Dec 2004ʼ,
ʻDatabase Resource Managerʼ, ʻKimberly Flossʼ);

INSERT INTO Catalog VALUES(ʻ2ʼ, ʻOracle Magazineʼ, ʻOracle
Publishingʼ, ʻNov-Dec 2004ʼ,
ʻFrom ADF UIX to JSFʼ, ʻJonas Jacobiʼ);

INSERT INTO Catalog VALUES(ʻ3ʼ, ʻOracle Magazineʼ, ʻOracle
Publishingʼ, ʻMarch-April 2005ʼ,
ʻStarting with Oracle ADF ʻ, ʻSteve Muenchʼ);

Listing 2: Catalog.jsp

<%@ page contentType=”text/html”%>
<%@ page

import=”java.sql.*,javax.sql.*,java.util.*,javax.naming.*”

%>
<html>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html”>
 <title>JDBC JSP Application</title>
 </head>
<body>
 <%
 InitialContext ctx=new InitialContext();
 DataSource ds=(DataSource)ctx.lookup(“jdbc/MySQLDS”);
 Connection connection=ds.getConnection();
 Statement stmt=connection.createStatement();
 ResultSet resultSet=stmt.executeQuery(“Select * from

Catalog”);%>

 <table border=”1” cellspacing=”0”>
 <tr>
 <th>CatalogId</th>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>

 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (resultSet.next())
 { %>
 <tr>

<td><%out.println(resultSet.getString(1));%></td>

<td><%out.println(resultSet.getString(2));%></td>

<td><%out.println(resultSet.getString(3));%></td>

<td><%out.println(resultSet.getString(4));%></td>

<td><%out.println(resultSet.getString(5));%></td>

<td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <% } %>
 </table>
 </body

JDJ.SYS-CON.com34 January 2007

ne of the things that kept me
and my team busy over the past
couple of years was starting to
support J2EE 1.4 in OptimalJ

– a goal that we accomplished with the
release of OptimalJ 4.2. Now that this
job is complete, it’s interesting to look
back and ponder the experience and
learn from it.
 As OptimalJ is a vendor-neutral
modeling tool that generates J2EE
applications, we tend to avoid applica-
tion server–specific features that are
not mandated by J2EE. Typically our
first take is to implement our code-
generation modules by the letter of
the spec and then ensure we fill in the
necessary bits for a particular vendor by
generating additional vendor-specific
deployment descriptors. This task, quite
feasible at first sight, proved rather intri-
cate with J2EE 1.4. Why? One reason is
incomplete implementations of certain
parts of the spec. However, there were
more causes as you’ll see later. But first
let’s recap the history of J2EE 1.4.
 The spec was released in November
2003. The first J2EE product certified
by Sun was JBoss 4.0.0 released in July
2004. IBM’s WebSphere 6.0 went out
in October 2004, while BEA’s WebLogic
offering hit the market in July 2005. All
these products passed Sun’s J2EE 1.4
CTS. For an idea of what the J2EE CTS
embodies, take a look at this interview:
http://www.theserverside.com/tt/ar-
ticles/article.tss?l=SunInterview. Here’s
a relevant quote from http://java.sun.
com/javaee/overview/faq/j2ee.jsp (my
emboldening):

 J2EE technology is a set of standards
that many vendors can implement. The
vendors are free to compete on imple-
mentations but not on standards or
APIs. Sun supplies a comprehensive J2EE
Compatibility Test Suite (CTS) to J2EE

licensees. The J2EE CTS helps ensure
compatibility among the application
vendors, which helps ensure portability
for the applications and components
written for the J2EE platform. The J2EE
platform brings Write Once, Run Any-
where (WORA) to the server.

Problems Encountered
 Our first surprise was with the new
MDB (message-driven bean) contract.
One vendor’s product simply couldn’t
cope with the new activation configu-
ration concept. This is really the core
functionality of EJB 2.1 and JCA 1.5.
In EJB 2.1, MDBs are decoupled from
JMS and their component contract is
changed to be extremely generic and ex-
tensible. They can receive messages from
virtually any inbound resource adapter,
not necessarily a JMS adapter. If you
want to learn more about the interaction
between resource adapters and MDBs in
J2EE 1.4, take a look at this article: http://
www.theserverside.com/tt/articles/ar-
ticle.tss?l=J2EE1_4. It is amazing how the
product could pass Sun’s J2EE 1.4 CTS
without implementing this support.
 The next wrinkle was with the timer
service – a long-asked-for missing
piece of J2EE that enables enterprise

components to have a reliable and
transactional timer. An enterprise
component can request that a callback
method be invoked on it after a given
passage of time (possibly repeatedly).
The component can query for pending
callbacks, cancel some of them, add
new ones, etc.
 An important consideration here is
to note that in EJB 2.1 all instances of
the same stateless session bean (SLSB)
and the same MDB are considered
equal, i.e., if the container has created
and pooled n instances of SLSB BeanA
and one such bean instance has sched-
uled a time notification, the container
can pick any of the n instances in the
pool to service the request. While the
timer notification is pending, any of
the n BeanA instances that the con-
tainer invokes can query for pending
timer notifications and see that the no-
tification is pending. That instance can
cancel it, so that the timer event will be
annulled and not invoked on any of the
n instances.
 Great was my surprise when I saw
that one vendor implemented the tim-
er service without regard for the above
fact. The vendor’s product sometimes
allowed one instance of BeanA to ob-
serve the pending timer notification as
cancelled and then suddenly again as
pending – all in the same transaction!
 A friend of mine, who works at an-
other company, had a similar experience
with his vendor (also certified by Sun as
J2EE 1.4 compliant). He was deploying
his application in a cluster and used the
timer service with SLSBs. The phenome-
non he witnessed was this: he had a pool
of n BeanA instances deployed to mul-
tiple nodes in the cluster. When any of
the n BeanA instances scheduled a timer
notification, only the BeanA instances
running on the same node as the bean
instance that scheduled the notification

Java

by Andrei Iltchenko

Are Vendors Becoming More in Charge
of Java Enterprise Edition...

O

Andrei Iltchenko is a devel-

opment lead at Compuware

Corporation where he

works on the MDA product

OptimalJ and is responsible

for the business logic area

of OptimalJ-generated J2EE

applications. He is also a

Sun certified Java developer

for Java Web Services, a

Sun Certified Business

Component Developer, a

Sun Certified Developer, and

a Sun Certified Programmer.

andrei.iltchenko@
nl.compuware.com

…or is Sun losing control over Java EE?

35January 2007JDJ.SYS-CON.com

could see and service it. BeanA instances
running on different nodes would
neither see the pending notification nor
be able to examine or cancel it, which
essentially breaks the EJB requirement
that all instances of the same SLSB have
the same object identity.
 With such surprises from certified
J2EE 1.4 servers, how can you write a
portable J2EE component that uses the
timer service and enjoy the “Write Once,
Run Anywhere” experience?
 All this was small time compared to
the issues we ran into when dealing with
the highlight of J2EE 1.4 – support for
Web services. The details of a compliant
J2EE 1.4 Web services implementation
are spelled out by three constituent
specs that J2EE 1.4 includes by refer-
ence: Web Services For J2EE, Version 1.1
(aka JSR-109/JSR-921), JAX-RPC, Version
1.1, and WS-I Basic Profile, Version
1.0. The last specification is crucial in
ensuring interoperability of Web service
components developed with J2EE.
 One cardinal requirement of a
compliant Web services stack is that
it can handle literal serializations/de-
serializations of Java Data Models
into/from XML. The need to support
literal serialization of data calls for an
XML Schema–aware Web service. If a
vendor’s Web service stack is not XML
Schema aware, you will very likely have
issues with the interoperability of the
Web services you deploy to the vendor’s
product.
 When we started testing our code
generation modules on one vendor’s
product, we were in for a big surprise.
The application server had a non-XML
Schema–aware Web services stack,
which effectively meant no proper sup-
port for WS-I Basic Profile. Why wasn’t
such a major omission caught by J2EE
1.4 CTS?
 That wasn’t all. Two products we tried
couldn’t handle overloaded methods
in service endpoint interfaces (SEIs) of
J2EE components. For an idea of what

the SEI is, refer to my earlier article
“Moving to SOA in J2EE 1.4” (http://
java.sys-con.com/read/180362.htm).
 Another major obstacle was with doc-
ument-literal bindings. One of the three
vendor products we support required
that additional Java code artifacts called
“wrapper beans” be generated and
registered in a JAX-RPC type mapping
DD for every operation of a SEI that is
exposed as a Web service component
with a document-literal binding, while
two other products wouldn’t work when
such extra code artifacts were generated
and registered. Yet more unfortunate
was the fact that the product requiring
the extra code artifacts left it up to the
component developer to provide these
rather than generate them automati-
cally during deployment. Being quite
unhappy with such a state of affairs, I
decided to contact the “Web Services for
Java EE” specification lead with a view
to ensuring that the issue be resolved
to the benefit of Java EE developers and
the “Write Once, Run Anywhere” goal.
One reply I got back from the spec lead
was this:

 We had clarified to you before on this
issue that there is not much we can do
for the JAX-RPC case with JSR-109 v1.1
or v1.2. There are J2EE 1.4 compliant
application server vendors who have
passed the CTS (Compatibility Test Suite)
and changes proposed by you would
mean that they would now need to fix
their implementations to conform to
this new requirement. This will not be
received well by vendors who have all
ready spent their resources getting J2EE
1.4 certification. While I do appreciate
your intentions of improving developer
experience, this may be a bit too disrup-
tive for the application server vendors/li-
censees.
 We have made improvements in the
deployment/packaging process with the
latest release of JSR-109 v1.2 (part of Java
EE 5.0) for JAX-WS endpoints.

 Unfortunately we found more
inconsistencies with document-lit-
eral bindings. One J2EE 1.4 certified
vendor couldn’t deal with Web service
components featuring methods with-
out a return type when a component’s
binding was document-literal.
 Another problematic area was the
JavaBean-based nature of SOAP seri-
alization rules (http://java.sys-con.
com/read/180362.htm). When a J2EE
Web service component receives or
returns a value mapped to a JavaBean,
the container is supposed to serialize
it to/deserialize it from XML by using
the java.beans.Introspector class to ex-
amine its properties. Two out of three
products we tried didn’t do that in the
initial version of their products.
 It’s true that it is all but inevitable
that a complex product has bugs, still
most of the issues I presented above
are of a bigger scale than simple bugs
and should have been flagged with the
J2EE 1.4 CTS.

Where Does Modeling Come In?
 With the differences in imple-
menting the same J2EE 1.4 features I
described, you should probably start
questioning how feasible it would be
to maintain a J2EE 1.4 application
that needs to run on more than one
application server and not be rigged
toward a given vendor. Based on the
experience we have gone through, I’ve
come to the conclusion that doing
that might be quite a pain and will
definitely not scale as the size of your
application’s code base increases.
This, in my opinion, is a valid example
in which model-driven architecture
and development delivers the fruits so
long as you have chosen a mature and
reputable MDA product that supports
J2EE.
 You are welcome to discuss the topic
on my blog: http://blogs.compuware.
com/cs/blogs/andrei_iltchenko/de-
fault.aspx.

As OptimalJ is a vendor-neutral modeling tool that generates J2EE
applications, we tend to avoid application server–specific features

that are not mandated by J2EE”
“

JDJ.SYS-CON.com36 January 2007

ervice Component Architecture (SCA) is a
simple model for creating service-oriented ap-
plications. This article highlights the benefits of
SCA and introduces SCA concepts by walking
through an example. The example has been de-

veloped using the Apache Tuscany open source project
(http://incubator.apache.org/tuscany/). All the sample
code in this article is licensed under the Apache License
2.0 (http://www.apache.org/licenses/LICENSE-2.0) and
the resources with the article gives a link to the sample
files. Both the Apache Tuscany and PHP SCA_SDO
(http://pecl.php.net/package/sca_sdo) projects provide
a free service oriented infrastructure for creating, pack-
aging, deploying, and managing applications built with
the SCA programming model.
 The SCA programming model itself is described by a
set of specifi cations that are being developed by many
vendors and individuals contributing to the Open Service
Oriented Architecture collaboration (http://www.osoa.
org).

SCA
 Service Oriented Architecture (SOA) is an architectural
approach driven by the need to overcome the challenges
of tightly coupled and department-specific applications.
SOA promises benefits such as improved business agil-
ity, improved flexibility, cost reduction, and the easy
sharing of information in heterogeneous and distri-
buted environments.
 SOA provides a blueprint but implementing an SOA
remains a challenge. The choice of technology available
to the implementer is bewildering and skills in a variety
of technologies are required to be successful. Service
Component Architecture (SCA) addresses the complexity
of developing an SOA solution through its simple model
for creating service-oriented applications for the whole
enterprise – from the client to the back-end. Businesses
using SCA can benefit from the following:
• Rapid development and increase in productivity:

SCA views an application as a set of connected com-
ponents. It provides a simple language-neutral com-
ponent model for implementing new components or
reusing existing components. A component can be
implemented in any language supported by an SCA

runtime. SCA promotes true loose coupling by
separating component implementation from
the details of component composition. This
bottom-up development style allows the developer
to focus on developing business-related code with-
out worrying about how this will fit into the overall
solution.

• Higher organizational agility and flexibility: SCA
also supports a top-down development approach of
creating business solutions with its flexible service
assembly model. SCA components can be wired
together in a composition. A component can be
replaced with another component in the composi-
tion as long as they share the same contract. The
composition can be adjusted to IT infrastructure
requirements such as service connections, transport
protocols, transactions, security, and reliable mes-
saging. Selectable transport bindings make solutions
available in the widest possible set of deployment
situations.

• Return on Investment through reuse: The SCA com-
ponent model makes it very easy to leverage invest-
ments made in existing applications and services. Its
standardized approach to encapsulation and interface
abstraction enables service reuse through wiring and
rewiring to construct new applications. SCA itself is
technology-neutral and isn’t intended to replace exist-
ing technology. It simply provides a component com-
position model that describes how new and existing
services are assembled.

Figure 1 is taken from the SCA Assembly Model specifi -
cation (http://www.osoa.org/display/Main/Service+Com
ponent+Architecture+Specifi cations) and shows the main
artifacts of SCA.
 The dark blue boxes (Component A and Component
B) show components. Components are at the heart
of SCA as they encapsulate business logic. Depending
on runtime support, components implemented us-
ing any programming technique can be included. For
example, Apache Tuscany currently supports the Java
language, JavaScript, Ruby, Python, and C++ component
types and provides an extension API for building new
extensions.

Simon Laws is with IBM and

is working with the open

source Apache and PHP com-

munities to build Java, C++

and PHP implementations

of the Service Component

Architecture (SCA) and

Service Data Object (SDO)

specifi cations.

simon_laws@uk.ibm.com

by Simon Laws, Haleh Mahbod,
and Raymond Feng

S

A simple model for creating service-oriented applications

Feature

What Is SCA?

37January 2007JDJ.SYS-CON.com

 SCA components can have properties (the yellow
boxes shown at the top of components A and B). Proper-
ties control the behavior of the component and can be
changed at deployment time. For example, a stock quote
application might have a property that indicates the cur-
rency that stock values will be quoted in.
 SCA components describe the interfaces that they
expose for other components to call, shown as the green
arrows on the left-hand side of the component boxes and
called “services” in SCA. Components also describe the
interfaces of other components that they expect to call as
the business logic executes, shown as the pink arrows on
the right-hand side of the component boxes and called
“references” in SCA. These exposed services and referenc-
es can be “wired” together to describe a working system.
 The diagram shows two components, A and B, as-
sembled together within the bounds of a larger “compos-
ite,” called composite A. The SCA composite describes
a collection of wired components and, as you can see,
the composite also echoes those services and references
that must be exposed beyond the bounds of the compos-
ite. Wiring together components within a composite is
akin to building a tightly coupled application that may
run in a single process. Wiring together the services and
references exposed by a composite represents a more
loosely coupled system where each composite may run
in a separate process or processor and is connected over
a network with various protocol/transport bindings.
This way SCA provides a consistent model for describing
standalone and distributed applications.

An Example Scenario
 We’ll use the fictional MostMortgage company’s
mortgage loan approval application to introduce SCA
in more detail. The loan approval application accepts a
mortgage request including the customer’s details and
the requested loan amount. It first checks the customer’s
credit to make sure the credit score meets the minimum
requirement. The interest rate is determined based on
the principal requested, the term of the loan, and the
customer’s home state. It then uses a mortgage calculator
to calculate the ratio by dividing the potential monthly
payment by the customer’s income. The ratio and credit
score are passed to do a risk assessment that makes the
final decision (see Figure 2).

Using SCA To Implement the
Mortgage Loan Approval Application
 In the next sections we’ll implement the loan approval
application using SCA and walk through the creation of
individual SCA artifacts. At a high level the loan approval
application can be broken down into a number of SCA
components that are assembled together into a composite.
The components in this composite consist of Loan Approval,
Credit Check, Interest Rate, Mortgage Calculator, and Risk
Assessment components. The entire composite is deployed
in a SCA system (see Figure 3).

SCA Components
 An SCA component is the basic building block for creat-
ing SOA applications and is characterized by three distinct
and yet related pieces of information: a) The program logic
that provides the function of the building block (referred to

as implementation), b) The definition of how this build-
ing block might interact with other components (referred
to as component type) c) The concrete description of how
this building block fits with all the other blocks to build
a solution (referred to as assembly or composition). We’ll
explain each in more detail in the following sections and give
examples but here’s an overview.
• Component Type: The component implementation is

provided using any programming language that’s sup-
ported by an SCA runtime. Component implementers
are free to write in any style they’re comfortable with but
are bound by the services, references and properties,
as defined by the component type, in the way that they
interact with other SCA components. The SCA specifica-
tions describe how each programming language maps to
SCA.

• Component Type: Component type describes the shape of
a component in terms of the services it exposes, the refer-
ences it depends on and the properties that control the
component’s behavior. Component-type information can
be found either in a file where, by convention, the name
is ImplementationFileName.componentType and/or by
introspection of the component implementation.

 Figure 1 The artifacts of SCA

 Figure 2 The loan approval application

Haleh Mahbod is a program

director with IBM, manag-

ing the team contributing

to the Apache Tuscany as

well as SOA for PHP open

source. She has extensive

development experience

with database technologies

and integration servers.

mahbod@us.ibm.com

JDJ.SYS-CON.com38 January 2007

• Component Composition/Assembly: Once a compo-
nent’s implementation and its component type are
defined it’s ready to be assembled into a network of
services that together provide an SOA solution. The
assembly is defined in an SCA composite file. The SCA
runtime uses the information in this file to instantiate
an SCA application.

 SCA defines an XML format called Service Component
Description Language (SCDL). SCDL is the XML format of
component-type files and composite files. For example,
the loan approval application’s MortgageCalculator com-
ponent has both component-type and component-imple-
mentation files and the MortgageCalculator component is
described and wired together with other components in a
composite file (see Figure 4).

Component Type
 The MortgageCalculator component-type file (Mort-
gageCalculator.componentType) describes the single ser-
vice that components of this type provide. The Mortgage-
Calculator component doesn’t reference other components
and doesn’t provide any settable properties so <reference>
and <property> elements don’t appear.

<componentType>

 <service name=”MortgageCalculatorService”>

 <interface.java interface=”mortgage.MortgageCalculator”/>

 </service>

</componentType>

Component Implementation
 The class “mortgage.MortgageCalculatorImpl” (MortgageCal-
culatorImpl.java) contains the business logic for this component.

public class MortgageCalculatorImpl implements MortgageCalculator {

 public double getMonthlyPayment(double principal, int years,

float interestRate) {

 double monthlyRate = interestRate / 12.0 / 100.0;

 double p = Math.pow(1 + monthlyRate, years * 12);

 double q = p / (p - 1);

 double monthlyPayment = principal * monthlyRate * q;

 return monthlyPayment;

 }

}

 In the next section (Component Services) we show that
if we chose to use annotations, as we can in the Java lan-
guage, the component-type information can be included
in the implementation file. Most of the code snippets in
this paper use annotations to provide component-type
information instead of using a component-type file.

Component Services
 Let’s take a look at how a component offers a service
to others. In the following example MortgageCalculator
exposes a service that contains one method, called get-
MonthlyPayment, by using a @Service annotation. As the
Java language runtime supports annotations our method
can be exposed as a service interface by simply annotating
the class.

@Service(MortgageCalculator.class)

public class MortageCalculatorImpl implements MortageCalculator {

 public double getMonthlyPayment(double principal, float inter-

estRate) {

 ...

 }

}

 The @Service annotation tells the SCA runtime that the
MortgageCalculatorImpl class instances are exposed as
services with an interface defined by the MortgageCalcula-
tor interface.

Component References
 Now let’s look at how a component references other
components. We’ll use the Loan Approval component that
references other components as our example here. Loan
Approval is implemented using the Java language and will
use annotations. It uses @Reference to indicate its depen-
dency on RiskAssessment, CreditCheck, InterestRateQuote,
and MortgageCalculator. The referenced components can
be local or remote and the SCA runtime will ensure that
these references are correctly set at runtime based on the
wiring found in the completed application’s SCDL files
(shown later in this article). See Listing 1.

Component Interfaces
 The business functions provided by a service or re-
quired by a reference are described using interfaces in
SCA. The interfaces represent the contract for a service or
reference. Java and WSDL are two typical interface defini-
tion languages.

@Remotable

public interface CreditCheck {

 int getCreditScore(String ssn);

}

Feature

 Figure 3 The loan approval application presented as a composition of SCA components

Raymond Feng is a senior

software engineer with IBM.

He is now working on the Ser-

vice Component Architecture

(SCA) runtime implementation

in Apache Tuscany project as

a committer. Raymond has

been developing SOA for more

than 4 years and he was a key

developer and team lead for

WebSphere Process Server

products since 2002.

rfeng@us.ibm.com

JDJ.SYS-CON.com40 January 2007

 Interfaces can be local or remotable. Local interfaces
are the most optimized for local interactions between
components in the same composite. In contrast, remot-
able interfaces can be used for loosely coupled remote
interactions.
 Some business services have peer-to-peer relation-
ships that require a two-way dependency at the service
level. In these cases, the business service represents both
a consumer of a service provided by a partner business
service and a provider of a service to the partner business
service. This is especially the case when the interactions
are based on asynchronous messaging rather than on
remote procedure calls. SCA uses bi-directional interfaces
to directly model peer-to-peer bi-directional business
service relationships.
 For some services a sequence of operations must be
called to achieve some higher-level goal. The sequence
of operations is referred to as conversation. If the service
uses a bi-directional interface, the conversation may
include both operations and callbacks. SCA allows inter-

faces to be marked as conversational to bracket the series
of operations in the same conversation.

Component Properties
 Component properties can be used to alter the
behavior of a component at runtime without making
code changes. Let’s assume that the LoanApproval
component has a component property called “minimum-
CreditScore,” which can be set to different values based
on company policy. Below is a code snippet from the
LoanApproval component implementation that uses
an @Property annotation to identify a property called
minimumCreditScore. The property has a default value
of 650:

private int minimumCreditScore = 650;

// Property declaration using a setter method

@Property(name = “minimumCreditScore”, override = “may”)

public void setMinimumCreditScore(int minimumCreditScore) {

 this.minimumCreditScore = minimumCreditScore;

}

 The following illustrates customization of the compo-
nent by setting the “minimumCreditScore” property to 600
in the composite SCDL file to override the default value
(650) defined in the component type (remember that we’re
using Java language annotations to define the component
type):

<component name=”LoanApprovalComponent”>

 <implementation.java class=”mortgage.LoanApprovalImpl” />

 <property name=”minimumCreditScore”>600</property>

 ...

</component>

Composites - Composing Components
 So far we’ve concentrated on developing individual
components, making them available as services and defin-
ing their dependencies on other services. Now let’s look at
how the components can be assembled to provide a busi-
ness solution. This is referred to as a composite, which
is a logical concept. A composite contains one or more
components (see Figure 5).
 If we look at the composite file (default.scdl) for
MortgageComposite we can see how this draws all of the
components together.
 The SCA runtime uses the information in this SCDL file
to instantiate, assemble, and configure the components.
As can be seen from the example each component is
identified by a <component> element in the file and can
have references to other components. In this example,
LoanApprovalComponent has four <reference> elements
that are wired to four other components in the compos-
ite. The wiring is depicted through arrows in the diagram.
The interfaces on both sides of the wire have to be
compatible.
 A composite can be reused as a component in the
assembly but we don’t show an example in this
article.

Feature

 Figure 4 Describing components

 Figure 5 Wiring components together in the composite file

41January 2007JDJ.SYS-CON.com

Local Services
 The composite file we’ve just seen shows how com-
ponent references are “wired” to other components.
There’s no information included in this composite file
to describe what techniques should be used to pass
messages between the components. In this case SCA as-
sumes that the components will be local to one another,
i.e., they’ll be instantiated and run in the same process
address space. As we’re using the Java language in this
example the component instances will run in the same
Java VM. SCA is free in this case to use the most efficient
mechanism for moving a message from one component
to another. This is likely to be a direct component-to-
component call with little or no mediation.
 On the face of it composition of components using
local wiring may not appear to be very useful. Why not
simply code these components as normal Java classes
and have them interact in the normal way? In the case
of coarse-grain components SCA has a number of
advantages.
• Components can easily be reused and reconfigured in

other compositions
• Components that are local today can be made remote

tomorrow
• Components implemented using different supported

programming languages can easily be assembled

Remote Services
 A remote service could be running in a different process
on the same physical computer or on a different computer.
In the loan approval example we’ll now show how it can in-
teract with remote services. We’ll first expose CreditCheck
as a service in its own right and then we will replace it with
an externally provided CreditCheck Web service.

Exposing Components as Remote Services
 Let’s expand our scenario. Suppose the MostMort-
gage Company has a business partner who is interested
in using the CreditCheck functionality. In response to
that, the CreditCheck component can be made into a
Web Service that can be accessed by the LoanApproval
component or by the business partner. With SCA, this
is surprisingly easy and involves simply splitting off the
CreditCheck component into a new composite, adding a
service element to this new composite file and then wir-
ing the service element to the CreditCheck component
that provides the implementation of the service (see
Figure 6).

<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0”

 xmlns:wsdli=”http://www.w3.org/2006/01/wsdl-instance”

 name=”CreditComposite”>

 <service name=”CreditCheckWebService”>

 <interface.wsdl interface=”http://credit#wsdl.

 interface(CreditCheck)”

 wsdl:wsdlLocation=”http://credit wsdl/credit.wsdl” />

 <binding.ws endpoint=”http://credit#wsdl.endpoint(CreditCheck

 Service/CreditCheckSoapPort)”

 conformanceURIs=”http://ws-i.org/profiles/basic/1.1”

 location=”wsdl/credit.wsdl” />

 <reference>CreditCheckServiceComponent</reference>

 </service>

 <component name=”CreditCheckServiceComponent”>

 <implementation.java class=”credit.CreditCheckImpl”/>

 </component>

</composite>

 Note that the new service element references a WSDL
file to both describe the service interface and describe the
binding.

Replacing Local Components with Remote Services
 In the previous section we made CreditCheck a remote
component. Now we show how MortgageComposite can
be changed to reference this remote Web Service. All
we have to do is change the SCDL file for the Mortgage-
Composite. We add a reference element named Credit-
CheckReference to declare the remote CreditCheck Web
Service and we rewire the creditCheck reference on the
LoanApprovalComponent to this new reference.

<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” name=”Mortgag

eComposite”>

JDJ.SYS-CON.com42 January 2007

 <component name=”LoanApprovalComponent”>

 ...

 <reference name=”creditCheck”>CreditCheckReference</refer-

ence>

 ...

 </component>

 <reference name=”CreditCheckReference”>

 <interface.java interface=”mortgage.CreditCheck” />

 <binding.ws endpoint=”http://credit#wsdl.endpoint(CreditChe

ckService/CreditCheckSoapPort)”

 location=”wsdl/credit.wsdl” />

 </reference>

 ...

</composite>

 Note that the reference in SCDL specifies a binding
called “binding.ws”. The binding information indicates
the protocol used to send messages across the wire.
The system integrator here has the flexibility to configure
any binding that’s appropriate to enable secure commu-
nication between MortgageComposite and CreditCom-

posite. Our system diagram is now updated as shown in
Figure 7.
 The CreditCheck Web Service isn’t required to be
implemented as an SCA component. Suppose that there’s
an existing CreditCheck Web Service offered by a third
party. We can take the same approach to call this Web
Service. The only difference is that the WSDL would
contain the URL of the hosted Web Service. In the next
diagram, the CreditCheck Web Service is provided as an
Axis2 service and is deployed in an Apache Tomcat server
(see Figure 8).

<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” name=”Mortgag

eComposite”>

 <component name=”LoanApprovalComponent”>

 ...

 <reference name=”creditCheck”>CreditCheckReference1</refer-

ence>

 ...

 </component>

 <reference name=”CreditCheckReference1”>

 <interface.java interface=”mortgage.CreditCheck” />

 <binding.ws endpoint=”http://credit#wsdl.endpoint(CreditChe

ckService/CreditCheckSoapPort1)”

 location=”wsdl/credit.wsdl” />

 </reference>

 ...

</composite>

Multi-Language Extensions
 So far we’ve talked about Java language components
and local and remote services but we’ve talked very little
about the alternatives. You may have realized by now
that all SCA does, through its SCDL, is describe compo-
nents and the way that they can be assembled. It doesn’t
mandate how those components will be implemented or
indeed how messages will be passed along the wires that
join one component to another. Runtime implementa-
tions are free to add new implementation extensions.
The Apache Tuscany project has provided extension APIs
to make providing new implementation-type support
as easy as possible. The Apache Tuscany Java technol-
ogy SCA runtime implementation currently supports the
following implementation types: implementation.java,
implementation.javascript, and implementation.ruby.
Using the extension mechanism the Tuscany community
is currently working on Spring and BPEL implementation
types.
 The Apache Tuscany C++ SCA runtime implementation
currently supports the following implementation types:
implementation.cpp, implementation.python, and imple-
mentation.ruby.
 Currently the PHP SCA runtime implementation
only supports SCA components implemented in
PHP.
 You may have noticed in Figure 8 that we’ve changed
the MortgageCalculator component from Java to use the
JavaScript container from the Apache Tuscany Java SCA
runtime.

Feature

 Figure 6 The check credit composite

 Figure 7 Connecting the MortgageComposite to the CheckCreditComposite

����
�������
���������
�������
���������

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED NOTE: SPEAKER LINE-UP SUBJECT TO CHANGE WITHOUT NOTICE

��

����������������������������

“ ���������������������������
� �����������������

“ �����������������������������
� ���������������������������

“ ����������������������������
� ������������������������������

“ �����������������������������
� �������������������������������
� ���������

���

���

���

��

��

���

���������������
������������
����������������

���������������
������������
��������������

����������������������

����������������������������

������������������������������
����������������
������������������
���
���
� � ��������������������������������
�� � �������������������������
������������������������

��
������������������������������������
����������������
�����������������������������
���
� ��
���������������������������
� � ����������
� � ����������������������������
� � ����������������������������
� � ��������������������
��������������������������������������
�����������
������������������������������������
� � �������������������������������
� � �����������������������������������
� � �����������������
� � ���������������������������
� � ����������������
�����������������������������������
� � ���������������������������������
� � ������������������������������
��������������������������������
����������������

��������������������������������������
��
��
���
� ��
� �����
���
� �������������������������
�������������������������������������
���������������������������������������
����������������������������������

��
��
��
�� � �������������
�� � ����������
� � ����������
� � ����������������������
� � ��
� � ������
�����������������������
��
��������������������������
��
� ������������������
���
���
������������������������������
���������������������������������������

����������������������
��
��
������������������������������
�������������������������
���

��
������������������������
���
�� ������������������������������
���
�� �����������
���
� �������������������������
��
� �������������������

����������������������
����������������������
�����������������
����������������������������������
����������������������������
������������������
�����������������
�������������������
���������������������������
����������������������������

���������������������
���������������������������������������
��
���������������������������������
�����������������������������������
���������������������������������������
��
� ��������������
��������������������������
���
�� ���
� ���������������������
��
� ������������

��

����������������������

��

*ALL RELEVANT COURSE MATERIALS WILL BE OFFERED ON DVD AFTER THE EVENT

JDJ.SYS-CON.com44 January 2007

 The JavaScript implementation of MortgageCalculator.
getMonthlyPayment() is as follows:

function getMonthlyPayment(principal, years, interestRate) {

 var monthlyRate = interestRate / 12.0 / 100.0;

 var p = Math.pow(1 + monthlyRate, years * 12);

 var q = p / (p - 1);

 var monthlyPayment = principal * monthlyRate * q;

 return monthlyPayment;

}

 The component-type file (no changes required):

<componentType xmlns=”http://www.osoa.org/xmlns/sca/1.0” xmlns:

xsd=”http://www.w3.org/2001/XMLSchema”>

 <service name=”MortgageCalculatorService”>

 <interface.java interface=”mortgage.MortgageCalculator”/>

 </service>

</componentType>

 We can now change the Mortgage composite to reference
the Javascript MortgageCalculator component as follows:

<component name=”MortgageCalculatorJSComponent”

 xmlns:js=”http://incubator.apache.org/tuscany/xmlns/

container/js/1.0-incubator-M2”>

 <js:implementation.js script=”MortgageCalculator.js” />

</component>

Bindings and Extensibility
 The protocols used to transfer messages from
one component to another are also extensible. As
an example, the Apache Tuscany runtime provides
explicit extension APIs to aid the building of new bind-
ings. The Apache Tuscany Java SCA runtime implemen-
tation currently supports the following bindings:
binding.ws, binding.celtix, binding.jsonrpc, and
binding.rmi.
 As you have seen, SCA defines an assembly model
that can leverage existing technologies. We used the Java

and JavaScript languages and communicated with external
Web Services. This means SCA can be introduced incre-
mentally into an organization without having to
rewrite or replace existing applications. The evolving list
of implementation types and bindings available in Apache
Tuscany is representative of commonly used technologies
and is constantly growing. The implementation and bind-
ing extension APIs can be used to build specific extensions
where support isn’t provided by default.

Quality of Service and Policy
 SCA cleanly separates component implementation
from the mechanisms that components use to exchange
messages. This separation also allows the policies for
message transmission to be stated independently of
component implementation. So if you require messages
transmitted, for example, reliably, within a transaction
context or in encrypted form then the addition of state-
ments of policy to the SCDL files will support this. The
specifications for these policy statements aren’t com-
plete yet but you can see draft versions up on the OSOA
site (http://www.osoa.org/display/Main/Service+Comp
onent+Architecture+Specifications).

Accessing SCA Services from Non-SCA Clients
 In our MostMortgage example we’ve already shown that
our SCA-based system can expose a service interface for
others to call and can call service interfaces provided by
others.
 In the latter case SCA can call any service that’s reachable
using a protocol that the SCA runtime supports. We’ve shown
how the CreditCheck Web Service can be provided by some
third party and it need not be implemented using SCA. In
our example we relied on accessing the WSDL description of
the service and used a Web Service (SOAP/HTTP) binding to
talk to it.
 We haven’t demonstrated yet how a non-SCA client can
talk to SCA services. In our example we used SCA to expose
the CreditCheckComponent for others to call via Web Ser-
vices. Any Web Service-capable client could then call our
service regardless of the technology used to implement the
client. SCA does however provide APIs for non-SCA clients
to invoke an SCA service locally.

public class MortgageClient {

 public static void main(String[] args) throws Exception {

 // Locate the service using SCA APIs

 CompositeContext context = CurrentCompositeContext.getCon-

text();

 LoanApproval loanApplication = context.locateService(Loan

Approval.class,

 “LoanApplicationComponent”);

 ...

 // Invoke the service

 boolean result = loanApplication.approve(customer,

200000d, 30);

 }

}

Feature

 Figure 8 Connecting the MortgageComposite to a non-SCA Web Service

45January 2007JDJ.SYS-CON.com

 Note that the SCA API class CurrentCompositeContext
allows a service to be located by name. This is the compo-
nent name as it appears in the composite file. The result of
this location step is a service instance or proxy that imple-
ments the service interface. When a method is invoked by
the client code (approve() in this case), the SCA runtime
will dispatch the operation parameters to the correct
method in the component implementation according to
the definitions in the SCDL file.

SDO and DAS
 This article has focused on how the Service Compo-
nent Architecture allows components to be described
and assembled into working compositions. There’s also
a sister technology, Service Data Objects (SDO), that
describes a common API for accessing data. This is
important to SCA because it allows the Apache Tuscany
and PHP SCA runtimes to provide a common API for
accessing the messages that arrive at, or are sent from,
components. SCA and SDO work well together but can,
of course, be used independently. More information and
specifications for SDO can be found on the OSOA site
(http://www.osoa.org/display/Main/Service+Data+Objec
ts+Home).
 The PHP SDO PECL extension provides an implementa-
tion of SDO for PHP. The Apache Tuscany project provides
implementations of SDO for the Java language and C++.
Both projects provide an implementation of a Data Access
Service (DAS) that integrates the SDO data model with data
storage systems such as relational databases.

Summary
 SCA provides a concise and flexible model for describ-
ing and developing SOA applications and addresses the
strategic requirements demanded by agile IT environ-
ments. The SCA programming model focuses on describ-
ing components and the way that they’re assembled
together. It’s inclusive of existing technologies with a
primary goal of operating well as an addition to existing
heterogeneous environments.
 This article aimed to provide a broad perspective
of Service Component Architecture to intrigue the
user to explore the technology further at (www.osoa.
org) and experiment with the technology through three
available free open source implementations, the Apache
Tuscany (http://incubator.apache.org/tuscany/), SCA run-
times for the Java language and C++, and the SCA for PHP
(http://www.osoa.org/display/PHP/SOA+PHP+Homepage)
runtime.

Resources
• The Open Services Architecture specification site – http://

www.osoa.org/display/Main/Home
• The Apache Tuscany incubator project – http://incubator.

apache.org/tuscany/
• The PHP PECL SOA Project – http://pecl.php.net/package/

sca_sdo and the homepage at http://www.osoa.org/display/
PHP/SOA+PHP+Homepage

• The loan approval pplication examples – http://svn.
apache.org/repos/asf/incubator/tuscany/sandbox/rfeng/
samples.M2/mortgage/

Listing 1

@Service(LoanApproval.class) // Service declaration

public class LoanApprovalImpl implements LoanApproval {

 // Reference declarations using a protected or public field

 @Reference

 public RiskAssessment riskAssessment;

 @Reference

 public MortgageCalculator mortgageCalculator;

 @Reference

 protected InterestRateQuote interestRateQuote;

 // Reference declaration using a setter method

 private CreditCheck creditCheck;

 @Reference

 public void setCreditCheck(CreditCheck creditCheck) {

 this.creditCheck = creditCheck;

 }

 public boolean approve(Customer customer, double loanAmount,

int years) {

 int score = creditCheck.getCreditScore(customer.getSsn());

 if (score < minimumCreditScore) {

 return false;

 }

 float rate = interestRateQuote.getRate(customer.get-

State(), loanAmount, years);

 double monthlyPayment = mortgageCalculator.getMonthlyPayme

nt(loanAmount, years, rate);

 double ratio = monthlyPayment/customer.getMonthlyIncome();

 return riskAssessment.assess(score, ratio);

 }

}

SCA provides a concise and flexible model for describing
and developing SOA applications and addresses the

strategic requirements demanded by agile IT environments”
“

JDJ.SYS-CON.com46 January 2007

am always in awe of people who
develop hardware. They’re the real
engineers of our profession, the
ones pushing forward the speeds

at which things work, their size, and
their connectivity. For example, in
2005 there were more computer chips
produced worldwide than grains of
rice harvested and at a lower unit cost.
Tonight as I was watching a movie from
the 1980s, instead of dating it by the
big hair and shoulder pads, the tree
rings were most visible by the size of
the mobile phone the hero was using,
the lack of a plasma or LCD wide-
screen TV in an otherwise luxurious
living room, and the absence of a
satellite navigation device as the lead
characters got lost following directions
from a map.
 Why is it then that we in the software
trade have let the side down so badly?
Whereas hardware has advanced so
dramatically in the last 40 years, I be-
lieve that software has stumbled along
and, at worst, gone backward in a sort
of fashion-driven and hysteria-led
fervor. It must drive the hardware guys
crazy – each time they achieve a new
technological breakthrough with en-
gineering brilliance, the software that
runs on their new marvel seems to take
the same number of steps backward
that they managed to advance.
 I remember coding in RPG in the
1980s and struggling to keep response
times down so users wouldn’t be-
come dissatisfi ed with the applica-
tion and bombard our help desk with
complaints. If things got too bad, the
customer could always upgrade their
box to a newer and more powerful
model and, riding the wave of Moore’s
Law with semiconductor speed
doubling and price halving every six
months, this was always the long stop
for poorly performing code. However,
as each new box came along with more
memory and more processing power,
the software somehow became larger
and slower, so that the overall response
time never seemed to really go down.

I always felt sorry for the hardware
engineers who with each new chipset
probably thought, “Phew, we’ve just
created an X mega/gigahertz chip; now
everything that ran slowly before will
perform OK, let’s take a break,” only to
receive the call on their vacation that
a new OS release or software pack-
age had been created that needed
their new hardware specifi cation as a
minimum and could they please work
on the next release to make it perform
acceptably.
 My mobile phone broke the other
day after it fell on the kitchen fl oor, and
after an apologetic call to my network
provider, they agreed to send me a
new one. Fortunately it wasn’t going to
cost me anything so I naturally talked
myself into getting the latest whiz-bang
model. When it arrived I was in awe of
the thing: it’s super slim, has the most
gorgeous anodized case, a viewing
area larger than my digital camera’s,
and as a piece of engineering is a work
of art. The software on it, however, is
absolutely terrible: to send a message
I’m required to open a folder called
messages, select “create,” then type
the message, pushing a button for
“options”, then pressing “send” again,
which then asks me whether I want to
send SMS or MMS. From a usability
standpoint, it is just appalling. I don’t
care about network protocol; I want the
phone’s software to fi gure out which to
use by analyzing the message’s content.
 There are two buttons on the front of
the phone that will connect me to the
Internet, one of which I keep press-
ing by accident when I’m backing up
through menus. I don’t want to connect
to the Internet, ever, so I then have to
press another button to cancel this.
“Do you want to cancel?” This is the
only time the phone ever asks for con-
fi rmation and, unfortunately for me,
the only time I don’t want to be asked.
After pressing “Yes,” it then comes up
with a dialog telling me the number of
bytes transferred that I have to press
another button to dismiss. Why do I

care about the number of bytes? It feels
like the thing has a bunch of debug
options left on. When I receive a call
and the lid is open I press the green call
button to accept. If I get a call and the
lid is shut, all I have to do is open it and
not push the button. Nice touch Mr.
Usability Designer, except that if I open
it and push the green button because
I’m not thinking it holds the call. What
is holding a call? All I know is that I can
hear them and they can’t hear me and
I have to now push another button to
retrieve the call.
 My TV has a recordable receiver that
can store shows on its internal hard
drive allowing me to watch them at my
leisure. This is great and totally chang-
es the way one watches TV; however,
when the chaps wrote their software
on it they decided that the remote
control buttons for changing channels
would be up for a higher channel and
down for a lower number. Not a bad
choice, except the person writing the
software to allow the program guide to
be viewed used, not illogically, down
for higher number channels (as the
list is sorted with the lowest number at
the top), so there are now two opposite
ways to switch channel numbers de-
pending on which part of the device’s
software you’re using.
 The list of frustrating software things
that plague every existence doesn’t end
there, and it just disheartens me that
the basic task of analyzing, under-
standing, and tooling for the user’s
most frequent and simple scenarios
seem to have been overtaken by an
obsession to cram as much function-
ality as possible into the hardware,
overloading it with slow and poorly
thought-through applications. In soft-
ware we need to stop this millennium’s
ridiculous obsession with chasing the
latest architectural fad or silver bullet
that whizzes past, and instead focus on
going back to basics and fi nding out
what our users want and giving them
something that’s reliable, resilient, and
more hard wearing.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Software Should Be
More Hard Wearing

I

Joe Winchester is

a software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

47January 2007JDJ.SYS-CON.com

The terms on everyone’s lips this year include “AJAX,” “Web 2.0” and

“Rich Internet Applications.” All of these themes play an integral role at

AjaxWorld. So, anyone involved with business-critical web applications

that recognize the importance of the user experience needs to attend

this unique, timely conference – especially the web designers and

developers building those experiences, and those who manage them.

BEING HELD MARCH 19 - 21, 2007!
We are interested in receiving original speaking proposals for this

event from i-Technology professionals. Speakers will be chosen

from the co-existing worlds of both commercial software and open

source. Delegates will be interested in learning about a wide range

of RIA topics that can help them achieve business value.

NEW YORK CITYNEW YORK CITY

CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYN
CHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT

ND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRO
NOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND
XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS

Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...

REGISTER TODAY AND $AVE!

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED

SYS-CON Events is proud to announce the
AjaxWorld East Conference 2007!

The world-beating Conference program will provide developers and IT managers alike

with comprehensive information and insight into the biggest paradigm shift in website design,

development, and deployment since the invention of the World Wide Web itself a decade ago.

www.AjaxWorldExpo.com

T H E R O O S E V E L T H O T E L L O C A T E D A T M A D I S O N & 4 5 t h

JDJ.SYS-CON.com48 January 2007

ince Web 2.0 kicked off scarcely
a day goes by without a head-
line targeting mashups and
their enablers, AJAX and Web

Services, as the next hot Web tech-
nologies. Mashups are Web sites that
integrate a variety of services (e.g.,
news feeds, weather reports, maps,
and traffic conditions) in new and
interesting ways. Just take a look at Zil-
low.com, which provides instant home
valuations plotted as thumbtacks on a
map (Figure 1), or HousingMaps.com,
which marks listings from craigslist.
org as captions on a map, and you’ll
get a clear picture of the power behind
converging data sources.
 Google Maps is often identified as
the disruptive force that spawned the
mashups movement. The popular
mapping service is now the home of
more than 600 mashups according
to ProgrammableWeb.com. Why the
hype? Google Maps provides a simple
JavaScript API that makes geo-spatial
data, a historically cost-prohibitive
service, easily accessible to a broad
audience with a variety of technical
skills. Web 2.0-savvy developers are
highly attracted to this simplified and
accessible approach to SOA develop-
ment because it no longer confines
their Web site functionally to a user
interface, but opens the site up to
syndicate functionality and data. Thus
a site’s success is no longer based on
traffic alone, but on the number of
subscribers. The proliferation of these
services is mind-boggling. Program-
mableWeb.com, a mashup-tracking
site, has more than 300 registered ser-
vices available to mix-and-match, and
more than 1,100 registered mashups.
Roughly 2.8 new sites are registered
every day.
 Despite the momentum behind
mashups, corporate IT departments
only consume a handful of the servic-
es used by the mashup crowd. Instead,
businesses have constructed their own

ecosystem of services in parallel to the
Web 2.0 movement. The problem with
corporate adoption of mashups is two-
fold. First, the concept of mashups is
often considered a social phenome-
non or a grassroots effort tangential to
enterprise software. Second, there’s no
clear path to integrate business ser-
vices with those available on the Web.
This second issue is due, in part, to the
impedance mismatch between busi-
ness services and mashup services.
Mashup APIs are generally written in
JavaScript, while services deployed
to the enterprise are developed using
Java or .NET technologies. Thus, both
perception and technology define
the barriers to corporations adopting
an enterprise mashup strategy that

incorporates external services such as
Google Maps.
 Despite these initial hurdles, the
services and collaborative develop-
ment style that mashups provide
have created a buzz among enter-
prise software vendors. IBM recently
announced a R&D effort to create an
enterprise “mashup maker” — a tool
that lets developers blend corpo-
rate services with external services,
and rapidly assemble applications.
More recently, Oracle announced the
Oracle WebCenter Suite, which uses
JSR-168/286 and WSRP 1.0/2.0 to mix-
and-match corporate services using
a combination of AJAX and Java port-
lets. The “mashup maker” and “mash-
ups as a portal” are both interesting
concepts and quite possibly the future
of rapid business application develop-
ment. In a later installment we will
take a closer look at JSR-168/286 and
WSRP 1.0/2.0 and how these stan-
dards can be used to create enterprise
mashups that mix corporate services.
Meanwhile, the aim of this article is to
give application developers, specifi-
cally enterprise Java developers, the
tools to build meaningful enterprise
mashups that take advantage of the
popular mashup services.

Web Services

by Ric Smith

Enterprise Mashup Services

S

Ric Smith is a principal

product manager for Oracle’s

Java/JEE/SOA tool offering,

Oracle JDeveloper. Prior to

joining the Oracle JDeveloper

team, Ric worked for Oracle’s

consulting business as a

principal consultant, where he

specialized in Java EE architec-

ture and development. Before

his work in consulting, Ric was

a lead software developer at

Lockheed Martin. Ric holds

a Bachelor’s of Science in

Computer Science with honors

from the University of Arizona.

Part 1: Real-World SOA or Web 2.0 Novelties?

 Figure 1 Zillow

49January 2007JDJ.SYS-CON.com

Today’s Toolkit
 Business services developed with Java
technologies generally fall into one of
four categories: Enterprise JavaBeans,
Spring, POJOs, or Web Services. The
problem is that mashup APIs are gener-
ally implemented with JavaScript. There
are a few services such as Flickr that offer
parallel APIs written in Java, .NET, and a
number of other technologies. For sites
that don’t offer a Java API, developers
are left to their own devices to bridge
the integration gap between JavaScript
and Java. Existing Web Services provide
the most direct path to integration, and
processing XML over XMLHttpRequests,
though tedious, is a relatively established
method of binding AJAX-enabled inter-
faces to Web Services. There are a num-
ber of JavaScript packages, such as the
vcXMLRPC Library, that help simplify the
handling of XML-RPC requests. However,
integrating Java-centric applications
built with Spring or Enterprise JavaBeans
makes for a more interesting problem.
The first solution that comes to mind
is to expose an existing EJB or Spring
application as a Web Service, a simple
task given that both EJB 3.0 and Spring
2.0 support remote method invocations
via a Web Service end-point (JSR 181).
Despite the simplicity of creating such a
Web Service, we are still presented with
the cumbersome task of processing XML
with JavaScript.
 Java-to-AJAX libraries such as Direct
Web Remoting (DWR) and JSON-RPC-
Java offer a simple alternative by mar-
shaling Java objects to JavaScript and
letting JavaScript communicate directly
with server-side Java objects (Figure
2). So developers can interact with
Java objects as if they were client-side
JavaScript objects, negating the need to
work with XML. For instance, by using
a Java-to-AJAX library we can expose
operations performed by a session bean
to an AJAX-enabled Web interface and
then combine the outcomes of those
operations with a mashup service. An
added benefit of the servlet architecture
used by DWR and JSON-RPC-Java is that
both libraries can take advantage of the
authentication and session manage-
ment provided by Java EE 5. Despite
the similarities shared by both DWR
and JSON-RPC-Java, DWR has a few
advantages, two of which are the ability
to handle recursive object structures
and its integration with a large number

of other libraries and frameworks such
as Spring, Struts, JSF, Rife, WebWorks,
and Hibernate. Thus, the amalgama-
tion of DWR, enterprise Java services,
and JavaScript mashup APIs blends the
flexibility and creativity behind Web 2.0
with the reliability, scalability, and secu-
rity of the Java EE architecture without
needing to manipulate XML documents.

Building an Enterprise Mashup
 The example application referenced
in this article uses the Java Persistence
API (JPA), Google Maps, and DWR to
create a simple customer address book
application (Figure 3). The application
plots customers by address on a map
using Google Map’s JavaScript API. Us-
ers can update an entry by selecting a
marker on a map and editing associat-
ed values in a form. Changes are com-
mitted by clicking the update, remove,
and create. All records are stored in an
Oracle database and persisted using
the JPA.
 The application provides a simple
end-to-end example that demonstrates
one method of blending external mash-
up services with Java-centric business
services. Note that this article does not
provide an in-depth look at DWR, JPA,
or Google Maps. Instead, the intention
is to prove the simplicity of integration
between these technologies and enable
you, the reader, to build your own en-
terprise mashups that leverage popular
JavaScript APIs like Google Maps.
Please refer to the references included
in this article for more information on
DWR, JPA, and Google Maps.
 Setting up the DWR servlet is simple
and can easily be added to an existing
application. To install the servlet, first put

the DWR jar in the lib directory under the
WEB-INF directory, and add the following
lines to the web.xml descriptor:

<servlet>

 <display-name>DWR Servlet</display-name>

 <servlet-name>dwr-invoker</servlet-name>

 <servlet-class>

 uk.ltd.getahead.dwr.DWRServlet

 </servlet-class>

 <init-param>

 <param-name>debug</param-name>

 <param-value>true</param-value>

 </init-param>

</servlet>

<servlet-mapping>

 <servlet-name>dwr-invoker</servlet-name>

 <url-pattern>/dwr/*</url-pattern>

</servlet-mapping>

 Figure 2 DWR JavaScript to Java interaction

 Figure 3 Example application

JDJ.SYS-CON.com50 January 2007

 Next, DWR must be made aware of
the Java objects that should be remotable
as JavaScript interfaces. The Customers
object is the single JPA entity used in the
application and maps to a Customers
table (Listing 1). A session façade named
JavaServiceFacade is used to encapsulate
operations on the Customers entity object
(Listing 2). Both the JavaServiceFacade and
Customers classes must be registered with
DWR to interact with each object via JavaS-
cript. To do so, simply create a dwr.xml file
in the WEB-INF directory as follows:

<dwr>

 <allow>

 <create creator=”new”

 javascript=”JavaServiceFacade”>

 <param name=”class”

 value=”com…JavaServiceFacade”/>

 <include method=”queryCustomersFindAll”/>

 <include method=”queryCustomersFindById”/>

 <include method=”mergeCustomers”/>

 <include method=”persistCustomers”/>

 <include method=”removeCustomers”/>

 </create>

 <convert converter=”bean”

 match=”com…Customers”/>

 </allow>

</dwr>

 The dwr.xml descriptor defines a sub-
set of methods on the JavaServiceFacade
object to expose and declares a JavaBean
converter to marshal the Custom-
ers entity as a return value or method
parameter. In this example, two query
methods as well as the merge, persist,
and remove operations contained in the
JavaServiceFacade are exposed. Once the
dwr.xml file is created, three JavaScript
files must be imported in the JSP or
HTML pages contained in the applica-
tion. This enables the use of the JavaS-
cript representation or remote interfaces
of the JavaServiceFacade and Customers
Java objects. The imports are as follows:

 <script type=ʼtext/javascriptʼ

 src=ʼ../dwr/interface/

 JavaServiceFacade.jsʼ></script>

 <script type=ʼtext/javascriptʼ src=ʼ../

 dwr/engine.jsʼ></script>

 <script type=ʼtext/javascriptʼ src=ʼ../

 dwr/util.jsʼ></script>

 Note that only the JavaScript
interface for the JavaServiceFacade is
imported because it’s the sole object
that contains methods that are in-
voked explicitly. With the web.xml file
configured, the dwr.xml file created,
and all the necessary JavaScript files
imported, the methods contained in
the JavaServiceFacade are now acces-
sible from a Web browser via JavaS-
cript. To test the installation, open a
Web browser and navigate to http://
localhost:[port]/[nameofwebapp]/
dwr. A screen should appear resem-
bling that shown in Figure 4. Figure
5 shows all of the methods on the
JavaServiceFacade that are accessible
remotely.
 The next step is to integrate the
JavaScript interface for the JavaSer-
viceFacade with the Google Maps API.
To use the Google Maps API, an activa-
tion key is required. Visit http://www.
google.com/apis/maps/signup.html
to obtain a key. Keys are mapped to a
unique URL so the key included in this
article will only work with the source
code provided. To use a key different
from the one included in this example,
simply add the following import
statement to the top of your JSP page,
replacing the key contained in the URL
with the one obtained from the Google
Maps registration page. The import
below is required in the JSP page ir-
respective of the activation key used.

<script src=”http://maps.google.com/maps?f

ile=api&v=2&key=value” type=”text/

javascript”></script>

 With both DWR and Google Maps
configured, DWR calls to the JPA fa-
çade and the Google Maps API can be
integrated. A simple load function and
a div tag, in this case named “map,”

Web Services

 Figure 4 DWR test page

 Figure 5 Methods accessible remotely

Mashups are Web sites that integrate a variety of services
(e.g., news feeds, weather reports, maps, and traffic conditions)

in new and interesting ways”
“

51January 2007JDJ.SYS-CON.com

are used to initialize the mapping UI.
The load function is assigned to the
onload attribute of the body tag in
the HTML or JSP page. Note that if
you’re using Dojo you must use the
frameworks dojo.addOnLoad function
instead of the onload attribute. The
load function used in the example ap-
plication not only initializes the Google
Maps API, but also calls the query-
CustomersFindAll function defined
in the JavaServiceFacade JavaScript
interface to retrieve all the Customers
objects. The JavaServiceFacade.que-
ryCustomersFindAll function accepts
a reference to another function as an
argument. The argument handles the
return value of the JavaServiceFacade.
queryCustomersFindAll function as
an asynchronous callback. In this case
the callback handler is the process-
Customers function, which processes
the list of Customers returned by the
JavaServiceFacade.queryCustomers-
FindAll function, plotting each Cus-
tomers object on the map as a marker
(Figure 6).

// Called on intial page load

function load() {

 if(GBrowserIsCompatible()){

 // Remotely call Java method

 // to extract all Customers

 JavaServiceFacade.

 queryCustomersFindAll(processCustomers);

 // Initalize map object

 map =

 new GMap2(document.getElementById(“map”));

 // Add navigation controls to map

 map.addControl(new GSmallMapControl());

 map.addControl(new GMapTypeControl());

 // Initalize geocoder

 geocoder = new GClientGeocoder();

 }

}

// Plots an array of Customers on

var processCustomers =

 function(customers){

 // test if array is null

 if(customers != null &&

 typeof customers == ʻobjectʼ){

 // iterator over array of customers

 for(var i=0;i < customers.length; i++){

 // plot each customer on the map

 addMarkerForCustomer(customers[i]);

 }

 } else {

 alert(“Customer record is null!”);

 }

 // Set map center and magnification

 map.setCenter(

 new GLatLng(37.4419, -122.1419), 9);

}

 Plotting markers with Google Maps
requires three simple steps. First, a geo-
spatial point on the map is obtained by
using the Google geocoder API. Second,
a GMarker object representing the geo-
spatial is created. Finally, the marker is
added to the map at the given point by
calling the addOverlay function on the
current instance of the GMap2 object
– the object that represents the map
displayed in the UI. Below is the func-
tion used to plot a Customers object as
a marker. In the example a geo-spatial
point is generated with the address
information provided by the Custom-
ers object. A helper function is used to
create a new GMarker, which is then
added to the map object with a call to
the addOverlay function.

// Plots a customer on the map as a marker

function addMarkerForCustomer(customer){

…

 // create address string

 var address = customer.address + …;

 // create point using geocoder

 geocoder.getLatLng(

 address,

 function(point) {

 …

 // create marker

 var marker = createMarker(point,

 customer);

 // overlay marker on map

 map.addOverlay(marker);

 }

);

…

}

 The JavaScript functions used to
update and insert entries make use of
the addMarkerForCustomers function.
The createCustomer, updateCustomer,
and removeCustomer functions share
similar code and for the sake of brev-
ity only the create updateCustomer
Customer function is described in this
article. See Listing 1 for a detailed look
at the createCustomer and removeCus-
tomer functions.
 The updateCustomer function calls
a utility function, DWRUtil.getValues,
provided by DWR that extracts values

from HTML elements that contain
ids that map to name/value pairs
contained in a JavaScript object. In
this example the DWRUtil.getValues
function is used to populate a Custom-
ers JavaScript object that is persisted
using the JavaServiceFacade.merge-
Customers function. The JPA merge
operation updates the corresponding
record in the database. The second
argument passed to the JavaService-
Facade.mergeCustomers function is
an anonymous function that’s called
after the Customers object is merged
and is used to delete the currently
selected marker. The deleted marker is
replaced with a new one representing
the changes to the Customers entity.

 Figure 6 Customers plotted on a map

 Figure 7 Selecting a marker

JDJ.SYS-CON.com52 January 2007

 The removeSelectedMarker func-
tion is responsible for removing the
currently selected marker on the map.
The function uses the Google Maps
API to close the caption for the se-
lected marker and remove the marker
from the overlay.

// Updates the currently selected customer

function updateCustomer(){

…

 DWRUtil.getValues(customer);

 // Remotely call Java method

 // to update record

 JavaServiceFacade.mergeCustomers(

 customer,

 function(){

 // remove selected marker

 removeSelectedMarker();

 // add new marker with updates

 addMarkerForCustomer(customer);

 });

…

}

// Removes the currently selected marker

function removeSelectedMarker(){

…

 // close the caption window

 map.closeInfoWindow();

 // remove the current marker

 map.removeOverlay(currentMarker);

…

}

 The updateCustomer function and
similarly the createCustomer and re-
moveCustomer functions are invoked
when a user clicks a form button on a
page. Attaching the createCustomer
function to the onclick event fired by
the button when it’s clicked makes
the association between the button
and the updateCustomer function.
Thus, a single click of an HTML form
button creates a Customers JavaScript
object that’s converted to a JPA entity
and persisted to a database.

<button id=”update”

 onclick=”updateCustomer();”>

 Update

</button>

 Clicking a marker on the map
populates the customer form in the
application (Figure 7). This use case
exercises the GEvent facility in the
Google Maps API, which is used to
assign action listeners to objects
plotted on the map. A listener that
responds to a mouse click on a
marker is created in the createMarker
function. The assignment is made us-
ing the following code. Note that the
function created to handle the event
populates the customer form using
the DWR utility function DWRUtil.
setValues, which assigns values to
elements contained in the page
that map to the name/values pairs
defined in a JavaScript object. The
event handler also opens an informa-
tion window on the map that displays
the selected customer’s name and
address (Figure 8).

GEvent.addListener(marker, “click”,

 function() {

 // set the selected marker

 currentMarker = marker;

 // set form field values

 DWRUtil.setValues(customer);

 …

 // open info window with customer

 // name and address

 marker.openInfoWindowHtml(…);

});

 In summary, there are six essential
steps to set up both DWR and Google
Maps or any other JavaScript mashup
API in a Web application:
1. Edit the web.xml file and copy the

dwr.jar file to the WEB-INF/lib
directory.

2. Create the Java objects that will
be exposed remotely as JavaScript
interfaces.

3. Enable DWR to expose objects and
methods remotely by defining a
dwr.xml file.

4. Acquire an activation key.
5. Import all JavaScript files into your

JSP pages.
6. Finally, write a little JavaScript. Go

on it’s not so bad!

Conclusion
 In this article you learned how to
integrate Java services with mashup
APIs implemented in JavaScript. The
DWR framework enabled this simple
integration by providing remote ac-
cess to server-side Java objects via
JavaScript. The value of this example
is that it illustrates the simplicity of
incorporating services implemented
in either Java or JavaScript in the
context of an enterprise-ready appli-
cation. Thus, we now have one of the
tools necessary to build an enterprise
mashup. Next time, we’ll look at how
to consolidate the JavaScript code
that comprises your mashup applica-
tion into components that can be
reused in a variety of development
environments. For more information
on the technologies referenced in this
article please refer to the references
provided.

References
• Direct Web Remoting (DWR)

framework: http://getahead.id.uk
• Google Maps API: http://
 www.google.com/apis/maps/
 documentation/
• Java Persistence API: http://java.

sun.com/products/ejb/
• Information on Web 2.0, SOA, and

Mashups: http://blogs.zdnet.com/
• JDJ Volume 11 Issue 10 article:

“AJAX: The Easy Way” provides a
detailed look at the DWR frame-
work: http://java.sys-con.com/
read/286892.htm

Wireless Messaging

 Figure 8 Caption containing customer name and address

With both DWR and Google Maps configured,
DWR calls to the JPA façade and the Google Maps API can be integrated”“

53January 2007JDJ.SYS-CON.com
OFFER SUBJECT TO CHANGE WITHOUT NOTICE

JDJ is the world’s premier independent, vendor-neutral print resource
for the ever-expanding international community of Internet

technology professionals who use Java.

The World’s Leading Java Resource
Is Just a >Click< Away!

www.JDJ.SYS-CON.com
or 1-888-303-5282

6999$

Subscription Price Includes
FREE JDJ Digital Edition!

ONE YEAR
12 ISSUES

ONLY

JDJ.SYS-CON.com54 January 2007

ven for many seasoned developers, Swing code
can be notoriously difficult to organize. Where is
the right place to put parsing and validation logic?
How do you prevent those threading issues that
cause lockups or repainting glitches? Is it possible

to unit test GUI logic? Can the code somehow be shared
with other user-interfaces, like a web front-end? If these
questions sound familiar, the solutions presented here
may revolutionize the way you code with Swing.

Two-Layer Separation
 Suppose you want to offer your end-users a Swing-
based product built on top of a homegrown API, such as
a mathematics package, that they can actually license for
their own development purposes or perhaps even use to
extend your product through a plugin mechanism. To
achieve that goal, the API must be fully decoupled from all
Swing code. Let’s take a look at a simple example of such
an API.
 In the class Divider, I defined the following method:

public DivisionResult divide(

 int dividend, int divisor, IDivisionListener divisionListener)

 throws ArithmeticException { ... }

 Given a dividend and a divisor it returns a DivisionRe-
sult, a simple bean containing quotient and remainder. If
divisor is 0, it throws an ArithmeticException. I’ll discuss
the divisionListener parameter below.
 Now, let’s slap on a JFrame to exploit this API. Division-
Frame (see Figure 1) contains 2 JTextFields that enable
the user to enter a dividend and a divisor. When the user
presses the Divide button, the resultant quotient and
remainder are displayed in a JLabel.
 The simplest attempt at a separation of concerns is a
GUI layer built directly on top of the API layer. The GUI
layer consists of JFrames, JDialogs, Swing components
and their data models. The API layer contains the busi-
ness logic and as mentioned above, it should be possible
to use the API layer without a GUI.
 Since there are only 2 layers in this approach, user
inputs must be prepared for the API layer in the GUI layer.
In this case, Divider.divide() accepts integers, not strings.
The ActionListener bound to the Divide button parses

the values provided by the JTextFields and it either calls
divide() or it changes the text color red to indicate invalid
input.
 Keep in mind that Divider actually represents an
advanced mathematics package. Its methods may take
several seconds or minutes to complete. I decided to
simulate that effect by sleeping for 5 seconds inside of
divide(). If divide() is called directly by the ActionListener,
the GUI will appear frozen and possibly grayed-out for
that time because of Swing’s one-threaded nature (see the
sidebar, The Event Queue).
 The general solution is a request-response model. The
GUI layer makes a request into the API layer on a new
thread. That thread takes as long as is needed to complete
the operation, freeing the event-dispatching thread to
continue servicing the event queue. When the result of
the operation is ready, the thread uses one of the static
invokeXX() methods of the EventQueue class to safely
update the GUI by requesting that the event-dispatching
thread handle the update on its behalf.
 In this model, a thread boundary exists between the
layers: the event-dispatch thread is the only thread that
runs within the GUI layer, worker threads run within the
API layer, and neither type is allowed to cross the bound-
ary. Unfortunately, there is no mechanism to automati-
cally prevent a rogue thread from slipping through. Also,
the code required to keep switching threads tends to be
voluminous and ugly even with the aid of SwingWorker
(see Resources).

Three-Layer Separation
 Consider introducing a layer between the GUI and
API layers to mediate data between them. This media-
tion layer is responsible for converting user input into
a format acceptable by the API layer and for converting
resultant values and other data from the API layer back
into a format acceptable by the GUI layer. Ideally, the
boundaries between the 3 layers should be formalized
with interfaces; though, that may not be entirely possible if
the API was provided by a third-party vendor. Finally, the
event-dispatching thread is not permitted to cross into the
mediation layer. Worker threads can pass back-and-forth
between the mediation and API layers; however, they can-
not enter the GUI layer.

Michael Birken is actively

involved in the design and

research of emerging trading

technologies at a Manhat-

tan-based financial software

company. He’s a Sun Certified

Java programmer and devel-

oper. Michael holds a BS in

computer engineering from

Columbia University.

o__1@hotmail.com

by Michael Birken

E

Mediation

Man in the Middle
Patterns for designing scalable
 and robust user-interfaces

Feature

and
the

55January 2007JDJ.SYS-CON.com

 For our simple example, I created a single class, aptly named
Mediator, to serve as the entire mediation layer. To formalize
the layers, Mediator implements IDivisionFrameMediator,
which allows DivisionFrame to pass the values in the JText-
Fields directly as strings:

public interface IDivisionFrameMediator {

 public void divide(String dividendStr, String divisorStr);

}

 For the reverse direction, DivisionFrame implements IDi-
visionFrame. It enables Mediator to push a DivisionResult
back to DivisionFrame in the form of a string and to mark the
input fields as valid or invalid:

public interface IDivisionFrame {

 public void showDivisionResult(String divisionResult);

 public void showValid(boolean dividend, boolean divisor);

}

 Mediator is loosely-coupled to DivisionFrame; they each
hold a handle to each other as an interface type. However, the
handle cannot be a direct reference to the object in the oppos-
ing layer because that would break the thread-layer separation
rules discussed above.
 We could solve the problem by creating 2 proxy classes
(see the sidebar, Proxies). Let’s call these hypothetical classes
MediatorProxy and DivisionFrameProxy. MediatorProxy
implements IDivisionFrameMediator and contains a reference
to Mediator. Whenever you invoke a method of MediatorProxy,
it spawns off a new thread and uses it to call the corresponding
method in Mediator. Similarly, DivisionFrameProxy imple-
ments IDivisionFrame and contains a reference to Division-
Frame. Calling a method of DivisionFrameProxy delegates the
invocation to DivisionFrame using EventQueue.invokeLater().
 With such proxies, the code in DivisionFrame and Media-
tor appears immaculate. DivisionFrame calls directly into the
methods of its IDivisionFrameMediator and Mediator does
the same with its IDivisionFrame. It’s still a request-response
model, but the proxies hide the thread switching details and
there’s no chance of a thread inadvertently slipping by. How-
ever, creating the proxies themselves is a tedious and repetitive
task you shouldn’t have to do yourself.

SwingProxy
 To obviate the need to code the proxies by hand, I created
a utility class called SwingProxy that dynamically generates
them for you. SwingProxy provides a static method, newS-
wingProxy(), that accepts the target object and returns a new
proxy that can be cast to any of the interface types that the
target implements. For example, for an instance of Division-
Frame, which implements IDivisionFrame, you can create a
proxy for it as follows:

IDivisionFrame divisionFrameProxy =

 (IDivisionFrame)SwingProxy.newSwingProxy(divisionFrame);

 The proxy automatically takes care of the thread switch-
ing. In this case, if a method of divisionFrameProxy is
invoked by a worker thread, it will call the corresponding
method of divisionFrame with the event-dispatching thread.
Similarly, a call by the event-dispatching thread will turn into
a call by a worker thread.

 SwingProxy (see Listing 1) is built around java.lang.re-
flect.Proxy, a class that is capable of producing a proxy of a
specified type at runtime. The Proxy utility produces prox-
ies that resemble funnels; to create the proxy, you supply
an implementation of the InvocationHandler interface and
when you invoke any method of the proxy, it automatically
gets funneled down to InvocationHandler’s single method,
invoke():

public interface InvocationHandler {

 public Object invoke(Object proxy, Method method,

 Object[] args) throws Throwable;

}

 The first parameter is a reference to the proxy. The second
is the method that was called in the form of a reflected
method type. The third is an object array containing the
arguments passed to the method.
 SwingProxy contains 2 private inner classes. The first,
CallHandler, implements InvocationHandler. Its invoke()
method inspects the calling thread and switches accordingly.
When it needs to delegate a call from a worker thread to the
event-dispatching thread, it examines the return type of the
method. If it returns void, invokeLater() is used. Otherwise,
invokeAndWait() is called and the return value is passed back
to the worker thread that called the proxy. When the proxy is
called by the event-dispatching thread, the call is delegated to
a worker thread and nothing is ever returned. The interface
methods specifying calls from the GUI layer to the media-
tion layer should always return void. The worker threads that
CallHandler use originate from a thread-pool supplied by java.
util.concurrent.Executors.

 Figure 1 DivisionFrame allows the user to enter a

dividend and a divisor and get back a

quotient and a remainder

 Figure 2 ProgressDialog displays the percent

completed and allows the user to cancel

the computation

 Swing provides a single thread, the event-dispatching thread, for servicing

all user-interface requests, including repainting components. When you press

a button, its associated ActionListener is not executed immediately. Instead,

the request to execute it is placed onto the event queue. The event-dispatch-

ing thread pulls requests off the queue and executes them one-by-one, eventu-

ally handling the button press. If you implement a component listener that

performs a time-consuming task or that makes a blocking call, the event-dis-

patching thread will sit there completely dedicated to it, neglecting the other

requests on the event queue. The result is a non-responsive GUI that typically

appears grayed-out because invalidated components make requests for repaint

that also must pass through the event queue.

 The event-dispatching thread is considered the only the thread that can

safely access Swing components and their data models. A worker thread can

request that the event-dispatching thread execute code on its behalf using

invokeLater() or invokeAndWait(), static methods of the EventQueue class. Both

methods accept a Runnable implementation where run() contains the code to

execute. invokeLater() inserts the Runnable into the event queue and returns

immediately. On the other hand, invokeAndWait(), enqueues the Runnable

and waits until it is serviced by the event-dispatching thread before returning.

The Event Queue

JDJ.SYS-CON.com56 January 2007

 The second inner class, TargetInvoker, implements Runnable,
which allows it to be executed on a different thread. It performs
the actual method invocation using reflection in its run() method.

Pushing Data to the GUI
 The three-layer design described above is not limited a
request-response model. The API can stream data to the GUI
by pushing it through the mediation layer. To demonstrate this,
I created a dialog to display the (artificially prolonged) progress
of the division computation (see Figure 2).
 ProgressDialog contains a JProgressBar to show completion
percentage, a JLabel for status messages, and a button that
allows the user to abort the computation. ProgressDialog lives
within the GUI layer and to formally separate it from the other
layers, it implements IProgressDialog:

public interface IProgressDialog {

 public void start();

 public void setProgress(String message, int progress);

 public void end();

}

 Mediator holds a proxy to ProgressDialog as that
type. start() makes the dialog appear, setProgress() updates
the status label and the progress bar, and end() hides the
dialog. In turn, ProgressDialog holds a proxy to Mediator in
the form of an IProgressDialogMediator, which contains a
method that is called when the Cancel button is pressed:

public interface IProgressDialogMediator {

 public void requestCancel();

}

 Divider.divide() was written to abort if the executing thread is
interrupted. Mediator obtains a reference to that thread before
invoking Divider and requestCancel() simply interrupts it.
 The third parameter of Divider.divide() is an IDivisionLis-
tener, which is repeatedly called back during the 5 second
pause to simulate progress notifications:

public interface IDivisionListener {

 public void computationPerformed(int percentage);

}

 Mediator implements IDivisionListener and it delegates
the call to IProgressDialog.setProgress(). For time consuming
methods that don’t provide such a listener, JProgressBar can
be put into indeterminate mode. That mode shows an anima-
tion conceptually similar to the moving logo in the corner of a
web browser.

Mediator as the Controller
 It is important to recognize that the mediation layer
consists of more than just bidirectional adapters that
convert data between formats. It contains the control logic
that governs when and how the parts from the other layers
are used. The control logic should not be intermingled
with the adaptation logic that performs the parsing and
the static validation.
 In this simple example, Mediator.divide() contains most
of the control logic (refer to Listing 2). As talked about
above, divide() is invoked by the Divide button and it pass-
es the user input fields as strings. Instead of attempting
to parse the strings directly within divide(), they are used
to create instances of a class called DivisionFrameParser.
The constructor of DivisionFrameParser accepts a string
field and parses it. The class provides methods to check if
the parsing was successful and to retrieve the field as an
integer. In this way, Mediator is focused on the interac-
tion of classes across the layers and less on processing the
shuttled data.

Alternate UIs
 Mediator, DivisionFrame and ProgressDialog expose setters
to enable their dependencies to be injected prior to use. The
Main class, which serves as the entry point of the application,
wires everything up. However, with Mediator loosely-coupled
to the GUI layer, it’s possible to completely replace the user-
interface. To prove it, if you launch the application with a “-t”
command-line argument, it will run in text-mode. Text-mode
prompts the user for a dividend and divisor and it prints
results back to the console. It was made possible by providing
Mediator with alternate implementations of IDivisionFrame
and IProgressDialog.
 What about a web front-end? Web applications serve
data on demand; data is not easily pushed to the browser.
This makes showing progress updates, for instance, fairly
tricky. As with text-mode, implementing a web front-end
entails creating a new GUI layer, but it will also require ad-
ditions to the mediation layer. The control logic discussed
above was designed with pushing data in mind. New
controller classes will be required for the request-response
nature of the web; however, since we separated the parsing
and validation logic from the control logic, it can be reused
in a web application.

Testing
 The GUI classes do not need to be connected to Media-
tor to launch them. To demonstrate this, I inserted a main()
method into DivisionFrame that uses a mock implementation
of IDivisionFrameMediator. In this case, the division request
is simply printed out to the console.
 Using mock implementations to represent the rest of the
system is an especially useful technique if you are developing

Feature

 A proxy is an object that serves as a middleman for communication

between a source object and a target object. Typically, the proxy and the

target objects share the same interface. The source object holds a reference to

target as the interface type, which makes the source oblivious to whether it is

communicating directly with the target or communicating through the proxy.

 Proxies are used throughout the Java APIs. Remote Method Invocation

(RMI), for instance, allows a program to communicate with a target object on

a remote machine and treat it as if it were a local object. The program actu-

ally holds a reference to a proxy that hides the networking details. The target

object and the proxy share a common interface and the program only refers to

the target as that type. The Java API for XML Web Services (JAX-WS), which sup-

plants the Java API for XML-based Remote Procedure Call (JAX-RPC), performs a

similar service over a different protocol.

Proxies

57January 2007JDJ.SYS-CON.com

without the aid of a GUI builder because it will enable you
to quickly view your efforts without launching the complete
application. Mock implementations can allow you to fully
exercise the features provided by the GUI with much less
effort. For example, you do not need to induce a problem in
the real application just to make sure that error messages get
displayed correctly.
 Mock implementations are also the hallmark of automated
unit testing. The online code that supplements this article
includes JUnit tests for Divider, Mediator and Division-
FrameParser. To make Mediator easier to test, I made Divider
implement IDivider, an interface that contains its single
method. The complete execution cycle for Mediator is tested
with mock implementations of IDivider, IDivisionFrame and
IProgressDialog.

Real-Time Interaction
 Suppose you want to alter DivisionFrame such that as you
key in dividend and divisor, the text immediately turns red if
it doesn’t represent valid numerical data as opposed to after
pressing the Divide button. You can bind a KeyListener to
the JTextFields and receive an event for every keystroke, but
where should you do the validation? One option is to delegate
the key events to Mediator and let it validate and callback Di-
visionFrame; however, that cycle of execution is significantly
different from the ones discussed above because the API layer
is never invoked.
 The mediation layer provides adaptation for the API layer
and it shouldn’t be used where the API is not needed. In this
case, the behavior is entirely specific to the user-interface and
nothing is gained by thread switching. DivisionFrameParser,
which encapsulates the static validation logic, should be used
directly inside of a KeyListener. The Mediator class remains
the same and it double checks that the fields are valid also via
DivisionFrameParser.

 Consider a Swing application that contains a JTable with thousands of rows.

Each row is a view into a simple bean where the columns are mapped to the

bean properties. The table effectively enables the user to view and edit beans.

The API layer requires access to a collection of those beans to function. It occa-

sionally modifies bean properties and those changes should be reflected on the

front-end.

 In this example, which layer owns the beans? The beans are objects that

can be manipulated by both the event-dispatching thread and worker threads

apparently violating the layer-separation rules. Breaching the layers can be

dangerous. For instance, if a worker thread were to remove a bean from the

TableModel in the middle of a repaint, the event-dispatching thread could loop

past the end of the collection and throw an exception.

 Since a bean is simply a container whose methods execute in a timely man-

ner, they can be shared by all layers with a little help. First, all methods of the

bean should be synchronized to enable threads to access them atomically. For

example, a worker thread should be able to obtain a lock on a bean and read

several properties needed for a computation, knowing that all reads represent a

consistent view. Though, it must be recognized that until that lock is released,

the event-dispatching thread is potentially held up.

 Second, when the API modifies a bean property, the JTable needs to be noti-

fied so it can repaint the associated cell. The bean requires a listener, such as

java.beans.PropertyChangeListener, which is invoked by the setters. A mediator

class would implement the listener and forward the event to the TableModel

via SwingProxy to allow it to resolve the coordinates of the cell that requires

repainting. When a cell is edited by the user, TableModel.setValueAt() is called.

In that method, the event-dispatching thread would grab a lock on the bean,

remove the listener to prevent the TableModel from being called back, update

the property and restore the listener before releasing the lock.

 Finally, the beans should originate from a factory class that provides a

create() method and a destroy() method, and it would notify a mediator when

either of those methods are called. In turn, the mediator would update the

interested API collections and the TableModel in a thread-safe manner.

Sharing Objects

Listing 1
package example;

import java.lang.reflect.*;
import java.util.concurrent.*;
import java.awt.*;

public final class SwingProxy {

 private static class TargetInvoker implements Runnable {

 private Object target;
 private Object returnValue;
 private Throwable exception;
 private Method method;
 private Object[] arguments;

 public TargetInvoker(Object target, Method method,
 Object[] arguments) {
 this.target = target;
 this.method = method;
 this.arguments = arguments;
 }

 public boolean threwException() {
 return exception != null;
 }

 public Throwable getException() {
 return exception;
 }

 public Object getReturnValue() {
 return returnValue;
 }

 public void run() {
 try {
 returnValue = method.invoke(target, arguments);
 } catch(Throwable t) {
 exception = t;
 }
 }
 }

 private static class CallHandler implements InvocationHandler {

 private static final ExecutorService threadPool
 = Executors.newCachedThreadPool();
 private Class targetClass;
 private Object target;

 public CallHandler(Object target) {
 this.target = target;
 this.targetClass = target.getClass();
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {

 Method targetMethod = targetClass.getMethod(
 method.getName(), method.getParameterTypes());

JDJ.SYS-CON.com58 January 2007

 We can get away with using DivisionFrameParser
directly inside of a KeyListener because the parsing and
validation occur almost instantly. If we required something
more advanced, such as real-time spelling and grammar
checking, then a call into the mediation layer is justified
because that kind of validation will require a specialized
API and it’s unlikely to execute as timely. However, we
must consider that every key press gets delegated to an
independent thread. If you were to type too quickly,
several threads will needlessly be processing the same
input in parallel. To resolve this issue, we need to
setup the KeyListener to take the request-response
nature of the mediation layer into account. The
KeyListener shouldn’t call into mediation layer if it’s
already validating an input field in response to a prior
key press; rather, the KeyListener should simply mark
the field as changed. When the validation is complete
and the GUI layer is called back, that invocation can check
if the field has changed and make a successive call into the
mediation layeraccordingly.

Conclusion
 I hope you find the patterns discussed here useful in your
own development efforts. The full source code including unit
tests for the division application can be found at the online
version of this article at http://jdj.sys-con.com. DivisionFrame
and ProgressDialog were created using NetBeans 5.0. Refer to
the NetBeans documentation for using the Swing Layout Exten-
sion library outside of NetBeans.

Resources
• Mediator pattern: http://en.wikipedia.org/wiki/Mediator_pattern
• Event-dispatching: http://java.sun.com/docs/books/tutorial/

uiswing/misc/threads.html
• SwingWorker: https://swingworker.dev.java.net/
• Dynamic proxies: http://java.sun.com/j2se/1.3/docs/guide/

reflection/proxy.html
• Reflection: http://java.sun.com/docs/books/tutorial/reflect/

index.html
• JUnit: http://www.junit.org/index.htm
• NetBeans: http://www.netbeans.org/

Feature

 TargetInvoker targetInvoker = new TargetInvoker(
 target, targetMethod, args);
 if (EventQueue.isDispatchThread()) {
 threadPool.execute(targetInvoker);
 } else if (method.getReturnType() == void.class) {
 EventQueue.invokeLater(targetInvoker);
 } else {
 EventQueue.invokeAndWait(targetInvoker);
 if (targetInvoker.threwException()) {
 throw targetInvoker.getException();
 } else {
 return targetInvoker.getReturnValue();
 }
 }

 return null;
 }
 }

 private SwingProxy() {
 }

 public static Object newSwingProxy(Object target) {
 return Proxy.newProxyInstance(
 SwingProxy.class.getClassLoader(),
 target.getClass().getInterfaces(),
 new CallHandler(target));
 }
}

Listing 2
package example;

public class Mediator implements IProgressDialogMediator,
 IDivisionFrameMediator, IDivisionListener {

 private IDivider divider;
 private IDivisionFrame divisionFrame;
 private IProgressDialog progressDialog;
 private Thread divideThread;

 public void setDivider(IDivider divider) {
 this.divider = divider;
 }

 public void setDivisionFrame(IDivisionFrame divisionFrame) {
 this.divisionFrame = divisionFrame;
 }

 public void setProgressDialog(IProgressDialog progressMonitor) {

 this.progressDialog = progressMonitor;
 }

 public void divide(String dividendStr, String divisorStr) {
 DivisionFrameParser dividendParser
 = new DivisionFrameParser(dividendStr);
 DivisionFrameParser divisorParser
 = new DivisionFrameParser(divisorStr);
 divisionFrame.showDivisionResult(“”);
 divisionFrame.showValid(dividendParser.isFieldValid(),
 divisorParser.isFieldValid());

 if (dividendParser.isFieldValid()
 && divisorParser.isFieldValid()) {
 try {
 progressDialog.start();
 synchronized(this) {
 divideThread = Thread.currentThread();
 }
 DivisionResult divisionResult = divider.divide(
 dividendParser.getField(),
 divisorParser.getField(), this);
 synchronized(this) {
 divideThread = null;
 }
 if (divisionResult == null) {
 divisionFrame.showDivisionResult(“[Cancelled]”);
 } else {
 divisionFrame.showDivisionResult(
 divisionResult.getQuotient()
 + “ R “ + divisionResult.getRemainder());
 }
 } catch(ArithmeticException e) {
 divisionFrame.showDivisionResult(“NaN”);
 } finally {
 progressDialog.end();
 }
 }
 }

 public synchronized void requestCancel() {
 if (divideThread != null) {
 divideThread.interrupt();
 }
 }

 public void computationPerformed(int percentage) {
 progressDialog.setProgress(“Computing...”, percentage);
 }
}

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

AjaxWorld East Conference 2007 www.ajaxworldexpo.com 201-802-3022 47

AjaxWorld University Bootcamp www.ajaxworldbootcamp.sys-con.com 201-802-3022 43

 Altova www.altova.com 978-816-1600 Cover II

 Backbase www.backbase.com/jsf 866-800-8996 19

 Business Objects www.businessobjects.com/devxi/misunderstood 11

 IBM ibm.com/takebackcontrol/flexible 7

 ICEsoft Technologies www.icesoft.com 877-263-3822 33

 Infragistics www.infragistics.com/jsf 800-231-8588 8-9

 InterSystems www.intersystems.com/jalapeno3p 4

 IT Solutions Guide www.itsolutions.sys-con.com 888-303-5282 59

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 53

 Jinfonet Software www.jinfonet.com/live 240-477-1000 25

 Laszlo www.openlaszlo.org 39

 Northwoods Software Corp. www.nwoods.com 800-434-9820 41

 OPNET Technologies, Inc. www.opnet.com/panorama 240-497-3000 15

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 Cover IV

 Recursion Software www.recursionsw.com 800-727-8674 29

 Software FX www.softwarefx.com 800-392-4278 Cover III

 SYS-CON Website www.sys-con.com 888-303-5282 61

 TIBCO Software Inc. http://developer.tibco.com/ 800-420-8450 17

JDJ.SYS-CON.com60 January 2007

he year 2006 was a great year for
community technology development
across the board. At the JCP, Spec
Leads, Expert Groups members, ob-

servers and Executive Committee members
worked together to take Java standards to
the next level of development. Women Spec
Leads had an outstanding contribution; in
2006 several of them won the distinction of
Star Spec Leads for their leadership in driving
Java specifications from concept, submis-
sion, standard development, to Technol-
ogy Compatibility Kit (TCK) and Reference
Implementation (RI) delivery. Ekaterina
Chtcherbina was one of them. Always pas-
sionate about Java and the community, she
felt strongly that “Java technology for me is
not just a programming language. Rather it
is a new style of technology innovation. Java
technology is not created somewhere and
given as a final technology to everyone. In-
stead, the evolution of Java technology relies
highly on the community input.”
 Another woman Star Spec Lead of 2006
was Jaana Majakangas, a senior design
engineer at Nokia Corporation. Jaana always
found the spec lead work deeply satisfying.
“I like my current role where we create a
standard in some area, and it is interesting
to see how it is then implemented in actual
products. This gives us feedback on how we
have succeeded,” she said.
 Linda DeMichiel, senior engineer at Sun
Microsystems, also gained the distinction of
Star Spec Lead in 2006. Linda provided strong
leadership for the Expert Group of JSR 220
(EJB 3.0) and lent her expertise to the effort
of making EJB components easier to use and
the EJB programming model more flexible
and powerful.
 Pia Niemela, another woman Spec Lead
from Nokia Corporation, earned the Star Spec
Lead distinction for her JSR leadership espe-
cially for JSR 256 Mobile Sensor API, which
she brought successfully to its final develop-
ment stage.
 Six more new spec leads reached stardom
in 2006: Danny Coward, Pierre Gauthier,
Éamonn McManus, Antti Rantalahti, Bill
Shannon, and Shai Gotlib; they consistently
set the bar higher with quality and timely
delivery of their JSRs. If you want to find out

more about these Spec Leads and the JSRs
they lead, visit http://jcp.org/en/press/news/
star.
 More JCP landmarks and successes were
recognized at the 2006 JavaOne Confer-
ence. The community was brought into the
spotlight repeatedly and credited for its role
and contributions by leading names in the
industry including Sun Microsystems’ CEO
Jonathan Schwartz and other conference
speakers who urged attendees to join the
community. A good measure of the 2006 JCP
accomplishments is provided by the 4th JCP
Annual Awards and its winners. This year, af-
ter the nominations round, there were about

three to four candidates for the winner title in
each category – all very strong. There are five
categories in which contenders vie each year
to make the top four or five; this year’s win-
ners are noted in parentheses: Member of the
Year (Sony Ericsson), Most Outstanding Spec
Lead for Java Standard Edition/Enterprise
Edition (Linda DeMichiel), Most Outstand-
ing Spec Lead for Java Micro Edition (Asko
Komsi, Mark Duesner), Most Innovative JSR
for Java Standard Edition/Enterprise Edition
(JSR 292 Supporting Dynamically Typed
Languages on the Java Platform), and Most
Innovative JSR for Java Micro Edition (JSR 272
Mobile Broadcast Service API for Handheld
Terminals). Go to http://jcp.org/en/press/
news/awards/2006award_nominees for a
complete list of the nominees and a descrip-
tion of the awards categories including jury-
ing criteria.
 JCP inspired JSR itineraries at the 2006
JavaOne Conference took attendees on inter-
esting journeys of standards discovery. They
included sessions regarding key directions of
the Java Platform, Standard Edition 6 (Java

SE 6), and Java Platform, Enterprise Edition 5
(Java EE 5); JSR 270, the topic of an advanced
how-to session that presented the scripting
features in Java SE 6, including the scripting
APIs and the JavaScript ScriptEngine in-
cluded in the latest release; JSR 224, Java API
for XML-Based Web Services (JAX-WS) 2.0;
JSR 286, Version 2.0 of the Portlet Specifica-
tion; JSR 277, Java Module System; JSR 220,
Enterprise JavaBeans (EJB) 3; JSR, 269, Plug-
gable Annotation Processing API; JSR 235,
Service Data Objects (SDO); JSR 235, Service
Data Objects (SDO); JSR 256, Mobile Sensor
API; JSR 248, Mobile Service Architecture;
JSR 232, Mobile Operational Management;
JSR 257, Contactless Communication API;
and JSR 272, Mobile Broadcast Service API
for Handheld Terminals. These are just a few
examples of JSR-based technology events at
the 2006 JavaOne Conference. For a complete
search of JSR-based sessions, go to http://
java.sun.com/javaone/sf/sessions.jsp.
 2006 was also the year the JCP Training
Program went virtual. With this the JCP has
come to the rescue of those who cannot
travel to in-person training events and prefer
taking the training program virtually through
the JCP.org site.
 It was also the year of a new effort initiated
to improve and change the Java Community
Process through JSR 306. From the developer
feedback we received regarding the content
of the JSR, “Improving involvement of indi-
viduals” was the top pick, closely followed by
“Optimizing duration of JSRs.” Also “Easing
migration of existing technologies into stan-
dards” got a good number of votes. Summa-
rizing, JSR 306 will explore the possibilities of
implementing certain specifications outside
the Java platform. In EC talk, these have been
labeled as “Hybrid JSRs.” By “non-Java,” the
JSR drivers mean anything that is written and
runs entirely outside the Java environment. It
could be written in C, in Ruby, in COBOL, or
Prolog for that matter. The point is that there
are situations where it makes sense to enable
the JCP to specify APIs that can be imple-
mented in a Java application and in other
architectures. Web services interoperability
can be one context; Java language features

–continued on page 62

JSR Watch

Onno Kluyt

Ringing in the New Year

T

Onno Kluyt is the

director of the

JCP Program at

Sun Microsystems

and Chair of

the JCP.

onno@jcp.org

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7

JDJ.SYS-CON.com62 January 2007

JSR Watch

–continued from page 60

clearly not. “Hybrid” then describes a JSR
that allows both: it still must do all the
known Java work and may then also allow
the gathered IP to be implemented in
another world other than Java.
 Increasing openness and transparency
of expert group discussions and other
related communications at the JCP are
also among the goals of the JSR. They are
often-raised topics and very valid ones.
From a developer’s point of view, it is dif-
ficult to understand why public access is
not granted on Java specification efforts
that the developer is interested in. In earlier
versions of the JCP, the first draft review,
then known as Community Review, was
restricted to the JCP membership. Mean-
while we made all draft reviews public and
rightly so! Nothing scary happened. Since
JCP 2.5, the spec lead and expert group
have had considerable freedom over how
they conduct their work. Several spec leads
have taken that freedom to run their JSRs
in a very open manner, with Doug Lea’s JSR
166 often used as the prime example. Again
nothing scary happened. Many external
standards organizations and many JSRs
have a desire to work together (OSGi, OMG
with CORBA, OMA, and various Java ME–
related JSRs are some of the examples).
On previous occasions when we looked at
this, the solutions always seemed complex.
Now, in JSR 306, it appears we may be able
to build such liaison relationships and
provide that much-sought-after transpar-
ency with the same edit to the JSPA, the
membership agreement.
 Individual developer’s participation
will be included in the scope of JSR 306
as well. Joining the JCP as an individual
is evidently possible as proven by the
700 or so individual members out of the
total membership number of 1100, but
admittedly it is not a turnkey effort. When
the JCP first started in December 1998
it was aimed at enabling corporations
and institutions to come together over
the standardization of Java technology.
The membership agreement might seem
lengthy to some; it is because it needs to

capture all the IP aspects due to the JCP’s
mandate that JSRs deliver a spec but also
two pieces of software (the RI and TCK).
This makes the membership agreement
complex to a degree that you’re not typi-
cally used to dealing with as an individual.
The Web site (JCP.org) can also play a role
here. In parallel to JSR 306, my team will
be working to improve the information
provided on the site about the member-
ship process. Keep your opinions coming
regarding JSR 306; you can send them to
the Spec Lead (onno@jcp.org) or to the JSR
expert group (jsr-306-comments@jcp.org).
 The JCP wrapped up the year with
Executive Committee elections and key
JSRs that crossed the finish line. Elec-
tion congratulations go this year to IBM;
Oracle; HP; Fujitsu; Doug Lea, professor
of computer science; Motorola; Vodafone;
Siemens; BenQ; Ericsson AB; and Jean-
Marie Dautelle, individual developer and
initiator of several open source projects.
They were all elected or re-elected on the
JCP SE/EE EC and ME EC, respectively.
More details about the EC members and
their Java technology and community ex-
pertise are posted on jcp.org at http://jcp.
org/en/press/news/ec-feature_SE091206
for SE/EE EC and at http://jcp.org/en/
press/news/ec-feature_ME091206 for ME
EC.
 One of the JSRs finalized in the last
weeks of December 2006 is JSR 270, Java
SE 6 Release Contents, which published its
Final Release on December 11. The major
themes of this release are compatibility and
stability; diagnosability, monitoring and
management; ease of development; enter-
prise desktop; XML and Web services; and
transparency. Most of these are continu-
ations of successful themes from the Java
SE 5 release. The last theme, transparency,
is new and reflects Sun’s ongoing effort to
evolve the Java SE platform in a more open
and transparent manner. As the lead of this
umbrella JSR, Sun worked closely with an
Expert Group of 18 members including
ASF, BEA, Capgemini, Google, HP, IBM,
Intel, MetaSolv Software, Oracle, Red Hat
Middleware, SAP, SAS, Thoughtworks, and
several passionate individual developers

and representatives of the academic world.
Feedback from the broader Java community
was also included in this release through the
input developers shared via java.net. The
specification including the RI and the TCK
can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr270/
index.html. For a perspective on the top 10
reasons why developers should upgrade
to this new release of Java SE, visit Danny
Coward’s blog at http://blogs.sun.com/dan-
nycoward/entry/java_se_6_top_ten.
 Among the component JSRs developed
in close synchronization with JSR 270,
Java SE 6, which also posted their Final
Releases on December 11, are JSR 199,
Java Compiler API; JSR 202, Java Class File
Specification Update; JSR 221, JDBC 4.0
API Specification; JSR 223, Scripting for the
Java Platform; JSR 268, Java Smart Card I/O
API; and JSR 269, Pluggable Annotation
Processing API.
 The other umbrella JSR that published
its Final Release just before the turn of
the year was JSR 248, Mobile Service
Architecture. The main focus of this JSR
has been to create a very predictive Java
platform for mobile devices through con-
tinual architectural consistency, focus, and
direction to the collection of efforts for Java
ME. It has also been driven by the need in
the marketplace for a clear statement on
how the various technologies fit and work
together. The co-Spec Leads from Nokia
and Vodafone note on the JSR Public Page
(http://jcp.org/en/jsr/detail?id=248): “This
JSR provides guidelines to integrate Java
ME JSRs in a uniform and predictable ar-
rangement that is customized specifically
for the high-volume handsets. It issues
clarifications on certain components
when necessary and aims at reducing the
number of available options.” The Final
Release can be downloaded from http://
jcp.org/en/jsr/stage?listBy=final.
 This is just a quick recap of what went
on at the JCP in 2006 – a busy year with
important developments and accomplish-
ments that bode well for the new year
ahead of us.
 Stay tuned for updates, which we will
continue to bring to you year round.

From a developer’s point of view, it is difficult to understand
why public access is not granted on Java specification efforts

that the developer is interested in”
“

��

��

��

��

�������
������������������
�����������������
�������������

������� ��

����������������
��������������

������������������
��������������
�������������

����� ��

��������������
�����������
�������������

�������������������

������� ��

��������������
������������

������
�����������������

��������

����������

����������������
���������������
���������������

�����������
�����������������

����� ��

��������
�����������
�������������

���������

��

